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Motivation

Preface

This talk is for...

Neural Bayes estimators for likelihood-free
and amortised inference for spatial extremes

Specifically, anyone who estimates models that take a bit too long to fit
or require repeated fits, e.g., on-line, bootstrap.
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Motivation

Likelihood-based inference

Statistical inference typically proceeds via the likelihood function.

However, the likelihood function may be

unavailable (e.g., implicit generative/simulator models), or
computationally intractable (e.g., max-stable processes, censored
likelihoods).

One may approximate the likelihood function (e.g., composite
likelihood, the Vecchia approximation, etc.), but this involves a
trade-off between computational and statistical efficiency.

Alternatively, one may use likelihood-free inference.
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Motivation

Traditional likelihood-free inference

Several approaches to likelihood-free inference

Approximate Bayesian computation (ABC) or Indirect inference:

Simulate from a class of models and optimise model parameters by
minimising dissimilarity between replicates and observations.
Sensitive to the choice of summary statistics used to compare
simulated and observed data.
Case-specific, in the sense that ABC generally involves substantial
computation each time it is employed.

Neural estimators:
Use neural networks to learn the optimal summary statistics;
Black box - can be applied in many situations and used to create
amortised estimators, i.e., not case-specific!

We will focus on inference for spatial extremal processes but the ideas
can be applied more generally!
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Motivation

Motivating example: max-stable processes

Max-stable processes (MSPs), which arise as the only possible
non-degenerate limit of pointwise maxima of i.i.d random fields, are
popular models for spatial extremal dependence.
A MSP with unit Fréchet margins has the construction

Z (s) = sup
k≥1

RkWk(s),

where {Rk}k∈N are points of a Poisson process on (0,∞) with intensity
r−2dr and {Wk(s)}k∈N are i.i.d. copies of a non-negative stochastic
process W (·) satisfying E[W (s)] = 1 for all s ∈ S.
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Motivation

Motivating example: max-stable processes

Number of terms in the likelihood grows faster-than-exponentially

D-th Bell number: D = 3 ⇒ 5; D = 10 ⇒ 115975;

Computational tractability of the likelihood is limited (generally) to
D ≤ 12 (Castruccio et al., 2016);

A lot of time has been spent on researching efficient likelihood-based
inference techniques for MSPs, e.g., via pairwise likelihoods;

Computational issues are compounded by (left) censoring (we will
come back to this later...)

Castruccio, S., Huser, R., and Genton, M. G. (2016). High-order composite likelihood inference for max-stable
distributions and processes. JCGS 25.4: 1212-1229.
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Introduction to neural Bayes estimators

Neural estimators

A neural estimator θ̂(Z) is a neural network that takes in data Z as
input and provides a parameter point estimate θ as an output. See,
e.g., Lenzi et al. (2023).

Their construction is simple:

Sample (many) parameter vectors θ from a prior Ω(·).
Simulate Z from the model, conditional on these parameters.
Train a neural network that maps the simulated data Z 7→ θ to the
true parameters by minimising some loss function L(θ, θ̂(Z)).

We use a neural estimator that targets the Bayes estimator.

Lenzi, A., Bessac, J., Rudi, J., & Stein, M. L. (2023). Neural networks for parameter estimation in intractable models.
Computational Statistics & Data Analysis, 185, 107762.

Jordan Richards (Edinburgh) Neural Bayes Estimators 13 / 52



Introduction to neural Bayes estimators

Bayes estimators

Connecting neural estimators to classical estimators?

A non-negative loss function, L(θ, θ̂(Z )), assesses an estimator, θ̂(·),
for a single parameter vector, θ, and model realisation, Z .

The Bayes risk averages the loss function over the sample space, S,
and the parameter space, Θ, with respect to the prior, Ω(·);

rΩ(θ̂(·)) =
∫
Θ

[∫
S
L(θ, θ̂(z))f (z | θ)dz

]
dΩ(θ),

where f (z | θ) is the probability density function of the data
conditional on θ.

A minimiser of the Bayes risk is said to be a Bayes estimator with
respect to L(·, ·) and Ω(·).
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Introduction to neural Bayes estimators

Neural Bayes estimators

Denote a neural estimator by θ̂γ(·), where γ is a vector of
neural-network parameters (“weights” and “biases”).

A neural estimator is trained by solving the optimisation task,

γ∗ = argmin
γ

1

K

K∑
k=1

L(θ(k), θ̂γ(Z (k))), (1)

where θ(k), k = 1, . . . ,K , is sampled from the prior Ω(·) and, for
each k , data Z (k) are sampled from f ( · | θ(k)).

Since the objective function in (1) is a Monte Carlo approximation of
the Bayes risk, neural estimators approximate the Bayes estimator.
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Introduction to neural Bayes estimators

Neural Bayes estimators

A neural Bayes estimator θ̂γ∗(·) approximately inherits the attractive
properties of Bayes estimators (e.g., consistency, asymptotic
efficiency). See Sainsbury-Dale et al. (2023b).

The loss function specifies the Bayes estimator and, hence, the neural
Bayes estimator.

Under the absolute-error loss, the neural Bayes estimator approximates
the posterior median.
Under the squared-error loss, the neural Bayes estimator approximates
the posterior expectation.
Under the tilted loss, (θ̂ − θ)(I(θ̂ − q)), the neural Bayes estimator
approximates the posterior q-quantile. See, e.g., Richards et al.
(2023).
etc.

Sainsbury-Dale, M., Zammit-Mangion, A., & Huser, R. (2023). Likelihood-free parameter estimation with neural Bayes
estimators. The American Statistician, (In Press), 1-23.

Richards, J., Alotaibi, N., Cisneros, D., Gong, Y., Guerrero, M. B., Redondo, P., & Shao, X. (2023a). Modern extreme
value statistics for Utopian extremes arXiv:2311.11054
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Introduction to neural Bayes estimators

Uncertainty Quantification
Performing principled, fast uncertainty quantification?

It can be shown that the Bayes estimator under the loss

L(θ, θ̂) =

p∑
k=1

(θ̂k − θk)(I(θ̂k − q)), q ∈ (0, 1), (2)

is the vector of marginal posterior qth-quantiles (Sainsbury-Dale
et al., 2023a).

Therefore, one may approximate a set of marginal posterior quantiles
by training a neural Bayes estimator under the loss (2). No
bootstrap!

When approximating multiple quantiles (e.g., to construct credible
intervals), the neural-network architecture can be designed to prevent
quantile crossing.

Sainsbury-Dale, M., Richards, J., Zammit-Mangion, A., & Huser, R. (2023). Neural Bayes estimators for irregular spatial
data using graph neural networks. arXiv:2310.02600
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Introduction to neural Bayes estimators

Neural Bayes estimators for replicated data

Accounting for estimation with replicated data?

Proposition

Assume that, for some loss function L(·, ·) and prior distribution Ω(·), the
Bayes estimator exists and is unique. If the data Z 1, . . . ,Zm are condition-
ally independent given θ, then the Bayes estimator is permutation invariant.
That is,

θ̂Bayes(Z 1, . . . ,Zm) = θ̂Bayes(Zπ(1), . . . ,Zπ(m))

for any permutation π(·).
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Introduction to neural Bayes estimators

Neural Bayes estimators for replicated data

To ensure permutation invariance, we construct our neural estimator
with permutation-invariant neural networks.

Specifically, we use the DeepSets framework (Zaheer et al., 2017),

θ̂(Z ) = ϕ(a({ψ(Z i )}i=1,...,m)),

with ψ : Rn → Rw and ϕ : Rw → Rp generic neural networks, and
a(·) a permutation-invariant aggregation function.

Universality of DeepSets (Wagstaff et al., 2022) means that we can
approximate a large class of Bayes estimators arbitrarily well.
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Introduction to neural Bayes estimators

Neural Bayes estimators for replicated data

Schematic of a neural Bayes estimator based on the DeepSets framework:

Z 1

...

Zm

ψ(·)

...

ψ(·)

a(·) T ϕ(·) θ̂

The neural network ϕ(·) is densely-connected (vanilla).
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Introduction to neural Bayes estimators

Types of neural networks

Choose ψ(·) based on the modality of Z:

Dense neural networks (DNNs) can be used for univariate or
multivariate data, but do not exploit structure in Z.

Convolutional neural networks (CNNs):

Extract spatial patterns in data.
Require data to be measured on a fully observed, regular grid.
Can only be used with grids of a single size.

Graph neural networks for irregularly-observed spatial data. Agnostic
to number and configuration of sampling locations (Sainsbury-Dale
et al., 2023a).

Extensions: LSTMs, CNN-LSTMs, spherical CNNs...

What do we do if our data are censored?

Sainsbury-Dale, M., Richards, J., Zammit-Mangion, A., & Huser, R. (2023). Neural Bayes estimators for irregular spatial
data using graph neural networks. arXiv:2310.02600
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Peaks-over-threshold models

Background: peaks-over-threshold models

When doing inference for extremal dependence, we might actually
choose to treat our data as censored!

Likelihood estimators for spatial extremal dependence models are
typically highly biased if spatial extreme events include marginally
non-extreme values (Huser et al., 2016);

Can be mitigated in a peaks-over-threshold framework:

Impose artificial censoring of our data during inference;
Remove contribution of non-extreme values to the likelihood;
Extremity determined by some high censoring threshold, e.g., the
τ -quantile for τ close to one.

Huser, R., Davison, A. C., and Genton, M. G. (2016). Likelihood estimators for multivariate extremes. Extremes,
19:79–103.
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Peaks-over-threshold models

Background: peaks-over-threshold models

Jordan Richards (Edinburgh) Neural Bayes Estimators 23 / 52
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Peaks-over-threshold models

Background: peaks-over-threshold models

Both components extreme ⇒ both fully observed.
Likelihood contribution of (Z1,Z2): f (z1, z2)
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Peaks-over-threshold models

Background: peaks-over-threshold models

Only Z1 is extreme ⇒ Z2 treated as left censored at c2.
Record this in I = 1{Z2 < c2}.
Likelihood contribution of (Z1, I):

∫ c2
−∞ f (z1, z2)dz2.
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Peaks-over-threshold models

Background: peaks-over-threshold models

Record I1 = 1{Z1 < c1} and I2 = 1{Z2 < c2}.
Likelihood contribution of (I1, I2):

∫ c1
−∞

∫ c2
−∞ f (z1, z2)dz1dz2.

The exact values of (Z1,Z2) are irrelevant!
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Peaks-over-threshold models

Background: peaks-over-threshold models

Extends naturally to D-dimensions;

The contribution of an observation to the censored-likelihood is a
C -variate integral, where C ≤ D is the number of censored values;

Likely to be intractable for any C > 0 and expensive for large C ;

We adapt neural Bayes estimators so that they mimic
peaks-over-threshold inference;

Note: the censoring scheme is chosen a priori. This is not random
censoring or missing-at-random.
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Neural Bayes estimators for censored data

Defining censored inputs

Adapting NBEs for estimation with censored data?

To the neural estimator, we supply data (Z, I), where I is a one-hot
encoded vector of components with censoring.

For likelihood-based inference, we reduce the contribution of censored
values, to estimation of θ, by integrating them out of f (·).

For our neural estimator, we instead set censored values to a fixed
constant outside of the support of Z.
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Neural Bayes estimators for censored data

NBE input specification

We first transform Z 7→ Z∗ onto standard margins with a finite
lower-endpoint (does not alter the dependence structure in Z).
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Neural Bayes estimators for censored data

NBE input specification

To solve ii), we first transform Z 7→ Z∗ onto standard margins with a
finite lower-endpoint (does not alter the dependence structure in Z).
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Neural Bayes estimators for censored data

NBE input specification (cont.)

We then set “censored values” to a constant c∗ outside of the support
for Z∗...
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Neural Bayes estimators for censored data

NBE input specification (cont.)

...removing information about their exact values.
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Neural Bayes estimators for censored data

NBE input specification (cont.)

If c∗ is outside of the support for Z∗, then the NBE will not mistake it
for an uncensored value.
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Neural Bayes estimators for censored data

NBE input specification (cont.)

Information about extreme components is retained and will continue to
contribute to estimation of θ.
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Neural Bayes estimators for censored data

New input

Our NBE is then trained on (Z∗, I) and a user can perform a similar
transformation of their own data before supplying it to the NBE to get
parameter estimates.

Left: Realisation Z from a max-stable process.
Centre: Z∗ with τ = 0.9 censoring and c∗ = 0.
Right: one-hot encoding I.
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Simulation studies

Models

We consider inference with 3 popular models:

Max-stable process (MSP) and inverted MSP (1/MSP),

HW process (Huser and Wadsworth, 2019),

{Z (s)} = Rδ{W (s)1−δ},

where W is a standard Matérn Gaussian process with the same
margins as the heavy-tailed r.v. R and δ ∈ [0, 1];

If δ ≥ 1/2, then Z (·) is asymptotically dependent.

Asymptotic dependence: χ = limq→1 Pr[F1{Z (s1)} > q | F2{Z (s2)} > q].

Huser, R. and Wadsworth, J. L. (2019). Modeling spatial processes with unknown extremal dependence class. JASA.
114(525):434–444
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Simulation studies

Simulation study 1: outline

Consider MSP and IMSP (1/MSP) with τ = 0.9;

Both have range λ > 0 and smoothness κ ∈ (0, 2], with unif. priors;

Simulate 200 replicates on a 16× 16 grid;

Compare to the competing likelihood-based approach, i.e.,
censored pairwise-likelihood (cPL);

cPL(∞): all pairs; cPL(3), only those within 3 units.
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Simulation studies

Simulation study 1: results

Marginal test risk (s.d.) evaluated on 1000 test parameter sets.

MSP IMSP
λ κ λ κ

NBE 2.4 (0.1) 1.8 (0.1) 2.6 (0.1) 2.2 (0.1)
cPL (3) 3.5 (0.1) 2.2 (0.1) 4.6 (0.2) 3.2 (0.1)
cPL (∞) 4.3 (0.1) 6.4 (0.2) 5.4 (0.2) 6.8 (0.2)
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Simulation studies

Simulation study 1: joint distribution

Empirical joint dist. of estimators with single true vector θ;

Black: cPL(∞). Blue: cPL(3). Brown: NBE.

NBE captures well the joint distribution, but with lower
variance than the competing likelihood approach.
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Simulation studies

Simulation study 1: conclusion

Takeaways:

NBE gives large improvements in statistical efficiency;
Improvements in computational efficiency!
NBE takes exactly 0.0016 seconds; cPL takes ≈ 2 to 10 minutes.

We showcase similar for r-Pareto, Gaussian, and HW processes.

These NBEs are now ready-to-ship! Anyone with new data observed
on a similar grid1 can immediately get parameter estimates in
milliseconds...but only if they use τ = 0.9.

We can train an estimator for a general τ if we supply τ to the
estimator as an input.

1Constraint alleviated by Sainsbury-Dale et al. (2023a)
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Simulation studies

Simulation study 2: outline

Simulate m = 200 replicates of a HW process on a 16× 16 grid in
[0, 16]× [0, 16];

Model has three parameters with priors λ ∼ Unif(0.2, 10),
κ ∼ Unif(0.5, 2) and δ ∼ Unif(0, 1);

For a test censoring level τ∗ = 0.919, we compare two NBEs; one
trained with τ fixed at τ = τ∗ and one with τ randomly drawn from a
Unif(0.85, 0.95) for each set of replicates used for training;
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Simulation studies

Simulation study 2: results

Marginal test risk (s.d.) evaluated on 1000 test parameter sets with
censoring level τ∗.

τ λ κ δ

random 2.62 (0.07) 2.13 (0.05) 2.98 (0.09)
fixed 2.75 (0.06) 2.41 (0.06) 3.25 (0.10)

We can train an estimator for a general τ .

Randomising τ during training improves the estimator performance.

Implication: a new user will not need to retrain an estimator if they
want to use a different censoring level.
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Simulation studies

Simulation study 2: joint distribution

Different τ : (left) 0.919, (centre) 0.873, (right) 0.851.
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Application

Application

Application to monthly Saudi Arabian PM2.5 (Van Donkelaar et al., 2021)
concentrations shows the computational gains of our amortised estimator.
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Observation of surface average PM2.5 conc. (µg/m3) for Jul. 2012.

Van Donkelaar, A., et al. (2021). Monthly global estimates of fine particulate matter and their uncertainty.
Environmental Science & Technology, 55(22):15287–15300.

Jordan Richards (Edinburgh) Neural Bayes Estimators 45 / 52



Application

Application (cont.)

Data are arranged on a 242× 182 regular grid; monthly, 1998–2020.

Fit local anisotropic HW processes with τ = 0.9 (five params.);

To all possible subsets of data on G × G grids for smoothing level
G ∈ {4, 8, 16, 24, 32}. This is over 130,000 fits!

Once an estimator is trained (roughly 24 to 72 hours), a single model
fit takes between 1 and 4 milliseconds to estimate.

Speed-up/dimension comparison:

Full censored likelihood-based inference is limited to D ≈ 62 = 36 and
takes roughly 12 hours per estimate;
NBE with D = 322 = 1024

and ≈ 10 million times faster.
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Application

Results

Each pixel is a single model fit.
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Application

Results (cont.)

Each pixel is a single model fit.
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Application

Application (cont.)

We can also perform parameter uncertainty assessment for free, with
1000 bootstrap estimates obtained within seconds;

In total, our analysis uses

130 million model fits...

...which is far more than any comparable application2!

And only five estimators have been trained (one for each G ).

2as far as we know.
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Application

Conclusion and further work

We build likelihood-free estimators for peaks-over-threshold
spatial extremal dependence models;

We showcase massive gains in computational and statistical efficiency
when using our approach to inference;

An R interface to our Julia package, NeuralEstimators, is available
online3 with censored inference also illustrated4;

Recent additions using NBEs for irregular spatial data
(Sainsbury-Dale et al., 2023a).

3https://github.com/msainsburydale/NeuralEstimators
4https://github.com/Jbrich95/CensoredNeuralEstimators

Sainsbury-Dale, M., Richards, J., Zammit-Mangion, A., & Huser, R. (2023a). Neural bayes estimators for irregular spatial
data using graph neural networks. arXiv:2310.02600
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Application

Fin.

Scan for full details of my research.
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