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Extremes
Any event, environmental or otherwise, that occurs with very low

probability.
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@ Give a brief introduction to extremal regression
@ Show how deep-learning can enhance modelling, in two settings:
° Deep high-dimensional extremal quantile

regression
Joint with Raphaél Huser
° Radial-angular modelling of

multivariate extremes
Joint with Ed Mackay, Callum Murphy-Barltrop, Phil Jonathan

These models are grey box — Principled statistical models combined
with data-driven deep learning methods.
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Brian J. Reich

Chapter 21. Richards and Huser (2026a).
Extreme Quantile Regression with Deep Learning.
Code and short courses on GitHub - https://github.com/Jbrich95/
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https://github.com/Jbrich95/

und on extreme events

° Observations Y1,..., Y,.
Can we estimate the probability of unprecedented extreme events of a
given size (typically larger than M, = max(Y1,..., Ys))?
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Background: Extreme-Value Theory

o Need to

based on resilient, reliable,
theoretically-justified methods

Main idea of Extreme-Value Theory (EVT)

Requires assumptions about the regularity of the tail, or the tail decay rate
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Marginal modeling of extremes — theory for

peaks-over-threshold

o Pickands—de Haan—Balkema Theorem:
may be approximated by the
, in the sense that there exists a scaling function a(u) > 0
such that as u — yr (upper endpoint)

Y —u AR ¢ E 37 AN S )
Pr(S >y 1Y) o H(”"{ exp(—y/r), | €0,

where 7 > 0 and £ € R are GP scale and shape parameters,
respectively.

o In practice, we can model excesses directly as
Y—-ul|Y >u~GP(1,8).
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Marginal modeling — Statistics of peaks-over-threshold

Threshold exceedance approach Yi, Yo, ..., S F

Observations Y;

For a broad range
of distributions F, we have the following large-u approximation %1

GP densiy, hiy)
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Extremal regression

Now, introduce data pairs (Y;, X;)"_;.

Stats 101

Given Y and covariates X € RP, how do we model the impacts of X on
the extremes of Y7

Answer: Regression

In the GP case, we model

Yi — u(xi)|(Yi > u(xi), X = x;) ~ GP(7(xi), £ (xi))-
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Extremal regression

To model extremes of Y | X = x, assume Y | X = x ~ F(60(x)) with
parameters 0 : RP — R9.

Standard choices for F (in extreme analyses):
o F = GP with 0(x) = (7(x),&(x)) (for threshold excesses);
o F = GEV with 0(x) = (1(x), 0(x),£(x)) (for maxima).
o Newer alternatives:

eGPD (Papastathopoulos and Tawn, 2013; Cisneros et al., 2024),
point processes (Richards and Huser, 2026b),

bGEV (Castro-Camilo et al., 2022; Richards and Huser, 2026a),
bGP (Majumder and Richards, 2025).

© 06 0 o

Majumder, Richards (2025). Semi-parametric bulk and tail regression using spline-based neural networks. arXiv.
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Regression

To model extremes of Y | X = x, assume Y | X = x ~ F(60(x)) with
parameters 0 : RP — RY.

Standard choices for 8(x) (in extreme analyses):
o Linear: ie., 0j(x) = Bo + fix1 + Paxo + ...
o Additive (typically utilising smoothing splines): i.e.,

0;(x) = Bo + 01 YRy Bithin(xi)-

Recent uptick in replacing €(x) with a non-parametric alternative from
supervised ML, e.g., Neural Networks:

O(x) =myomyo---omg(x),

but this idea goes back to Carreau and Bengio (2007)!

Carreau, Julie and Bengio, Yoshua. (2007) A Hybrid Pareto Model for Conditional Density Estimation of Asymmetric
Fat-Tail Data. AlaS.
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Deep regression for extremes

Hidden Hidden
layer 1 layer 2
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Extremal regression — Inference

Deep extremal regression:

o Models fitted using variants of stochastic gradient descent with
negative log-likelihood (associated with F) as loss;

Standard tools for regularisation, architecture optimisation;

©

Different choices for the type of neural network - MLP, CNNs
(Richards et al., 2023), LSTMs (Pasche and Engelke, 2024), GNNs
(Cisneros et al., 2024);

Can exploit off-the-shelf interpretability metrics - e.g., Shapley values,
accumulated local effects;

©

©

o Can mix-and-match neural networks and interpretable functions -
Partially-interpretable NNs (PINNs; Richards and Huser, 2026b).

Richards, Huser, Bevacqua, Zscheischler (2023). Insights into the drivers and spatiotemporal trends of extreme
mediterranean wildfires with statistical deep learning. AIES.

Cisneros, Richards, Dahal, Lombardo, Huser (2024). Deep graphical regression for jointly moderate and extreme
Australian wildfire. Spatial Statistics.
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US Wildfire Extremes

o EVA 2021 Data Challenge - US Wildfire extremes in-fill
o Response Y burnt area from the Fire Program Analysis (Short, 2017)

o 1993-2015, Mar.—Sep., leaving 161 fields; =~ 3500 locations; p = 42
predictors; n = 216713 (non-zero).

log(1++Y):2007-07 2m air temp. : 2007-07
L = 315

300
295

EEE R ENIEEE

275

ok N w s L

Vo
ENIFAIECIY

Jordan Richards (Edinburgh) Deep Extremal Regression



US Wildfire Extremes

PINN Model (Richards and Huser, 2026b):

o F taken as an extremal point process model with g = 3 parameters:
focus on the "median” g,(x) and shape £(x).

o We let
log go(x) = m(x) + [1(State) - temperature + [(State) - SPI,

where m(-) is a CNN.
0 &(x) := sigmoid{{((Lat, Lon))} is an MLP with only spatial
information.

Model selection and training done via a leave-space-time-clusters-out
validation (Appendix) and UQ via bootstrap.

Richards, Huser (2026). Regression modelling of spatiotemporal extreme US wildfires via partially-interpretable neural
networks. JCGS.

Jordan Richards (Edinburgh) Deep Extremal Regression



US Wildfire Extremes

State-varying coefficient model estimates:

Jq: 2m temperature (K) Oq: 3-month SPI
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US Wildfire Extremes

log(1 ++Y): 2007-07 Qq : 2007-07
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Metocean multivariate extremes

Now interested in joint extremes of a multivariate random vector X € R¥.
o 3l-year hindcast of hourly values for a site in Celtic sea (n &~ 270000).

o d =5, x- and y-components of wind speed and wave height, and
(log)-wave period

H, [m] S5

H, [m]

Figure: x-y components of windspeed Hs and T,,. Colours indicate the value of
windspeed Hs = /H2 + H2 (low, ).
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Metocean multivariate extremes
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Multivariate extremes

Ocean storms driven by non-convex combinations of “extremes” = we
model all joint extremes, rather than one variable being large.
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Angular-radial representation

Let X € R? and

R:=|X| >0, W:=__-ec891

Laplace margins Angular-radial decomposition
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Murphy-Barltrop, C. J., Majumder, R., & Richards, J. (2024). Deep learning of multivariate extremes via a geometric
representation. arXiv:2406.19936.
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Angular-radial representations
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Angular-radial representations

X,
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Angular-radial representations

X,
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Angular-radial representations

The joint density of (R, W) can be written as
frw(r, w) = fn(w)frw(r|w). (1)

The Semi-Parametric Angular-Radial model (SPAR; Mackay and Jonathan,
2023) replaces frjw(r|w) with a conditional GP model when r is big, i.e.,

friw (rlw) = Cfap(r — u(w); 7(w), §(w)), (2)
for large r > u(w) and where ¢ := Pr(R > u(w)|W = w) is fixed.

e Mackay et al. (2025) models (u(w), 7(w),{(w)) via deep extremal
regression.

Mackay, Jonathan (2023). Modelling multivariate extremes through angular-radial decomposition of the density function.
arXiv.

Mackay, Murphy-Barltrop, Richards, Jonathan (2025). Deep Learning Joint Extremes of Metocean Variables Using the
SPAR Model. JOMAE.
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Angular-radial representations

De Monte, L., Huser, R., Papastathopoulos, I., & Richards, J. (2025). Generative modelling of multivariate geometric
extremes using normalising flows. arXiv:2505.02957.
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Angular-radial representations

Recall
frw(r,w) = fiw(w)(fap(r — u(w); 7(w),&(w)), r>u(w). (3)

With estimates of (u(w), 7(w), {(w)), simulation from fz)y is simple.

In combination with a model for fiy (see, e.g., Wessel et al., 2025), we can
simulate from (R, W) by drawing from (3) with prob. ¢ and, otherwise,
from the corresponding non-extreme empirical distribution.

Wessel, Murphy-Barltrop, Simpson (2025). Generative machine learning for multivariate angular simulation. Extremes.
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Estimates
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Contours produced from deepSPAR model using 3000 years of reps.
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Marginal diagnostics
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ed: Uyp = /U2 + U2. Steepness: s = 2rH/(gT}3).
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Conclusion

o Deep regression models are conceptually simple yet powerful tools for
modelling extremes - both univariate and multivariate.

o Despite their black box nature, neural networks can be used alongside
statistical models to create something (atleast partially-)interpretable.
o Lots of code available on GitHub:

o Jbrich95/pinnEV/USWildfireExtremes;
o CASE2025_ shortcourse/extQuantRegressDL /cde-RKeras-intro;
o callumbarltrop/DeepSPAR/DeepGauge;

o Similar ideas can be used for modelling spatial extremes (see, e.g.,
Shao et al., 2025).

Shao, Richards, Huser (2025). Modeling nonstationary extremal dependence via deep spatial deformations. arXiv.
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https://github.com/Jbrich95/pinnEV
https://github.com/Jbrich95/USWildfireExtremes
https://github.com/Jbrich95/CASE2025_shortcourse
https://github.com/Jbrich95/extQuantRegressDL
https://github.com/Jbrich95/cde-RKeras-intro
https://github.com/callumbarltrop/DeepSPAR
https://github.com/callumbarltrop/DeepGauge
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Scan for webpage.
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PINN diagnostic

Fitted

Empirical

Figure: Pooled Q-Q plot for the local PINN bGEV-PP model fit on unit
Exponential margins, averaged across all bootstrap samples. 95% tolerance
bounds are given by the blue dashed lines.
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PINN CV

Figure: The left column provides two consecutive realisations {z(s,t) : s € S} of
the space-time Gaussian process. In the central column, spatial locations such
that z(s, t) is below the 0.2-quantile of {z(s,t):s € S,t € T} are assigned to
the validation set; these are denoted by the white pixels. For the right column,
white pixels denote spatial locations assigned to the testing set, where z(s, t)
exceeds the 0.8-quantile of {z(s,t) :s€ S,t € T}.
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