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Introduction Simulation Study

= Simulated data over a warped domain (generated with 2 AWUs and an RBF unit)
on a 101 x 101 grid are generated from a stationary BR process with ¢ = 0.1 and
k= 1. D = 2000 locations are chosen randomly for inference, with 100
iIndependent replications held out for training.

- Modeling non-stationarity in extremal dependence is challenging, while inference
for stationary and isotropic models is considerably easier.

» Deformation approach (Sampson and Guttorp, 1992): warp the original domain G
to a latent space W where stationarity/isotropy can be reasonably assumed.

= The deep compositional model consists of AWUs for each input axis, one RBF, and
a Mobius transformation. Both PL and EC inference methods are used to
reconstruct the warped space.

« Computation time for PCL inference using 1% (100%) pairs is 1h (7h);
computation time for EC inference is generally less than 1h.

= Consider a spatial process Z(-) on G with finite variance for each s € S, C G.
Estimation of the warping function f : G — W is problematic: computationally
expensive, lacking in flexibility, and not injective.

« Deep composition modeling approach (Zammit-Mangion et al., 2022):
transformation is constructed using a series of n injective warping functions,

f()=foofoor10o---0 fi().
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mapping the input to a d;-dimensional output for D; ¢ R%, Dy = G, and D,, = W.
= ¢, (+; ®;): basis functions at the ¢-th layer with parameters ©;.

EC EC

= W;: weights for the basis-functions at the i-th layer.
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Different choices for ¢; lead to different types of warping units.

= Axial Warping Unit (AWU): f; models nonlinear scaling of one input dimension.

= Radial Basis Function (RBF): f; describs local expansions/contractions at _'
various resolutions.

= Mobius Transformation: f; performs a rotation in the complex plane.

Figure 1. Top: true (left), and fitted (PCL: middle; EC: right) space;
Bottom: theoretical and empirical pairwise ECs (1st, 2nd), fitted pairwise ECs (PCL: 3rd; EC: 4th)
relative to the reference site in red.
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« The Brown-Resnick process is a max-stable process that can be expressed as
Z(s) =supUi(s)/ P,

1>1
where P;'s are Poisson point processes on R with unit rate intensity, and Uj;(s)
are 1.1.d. copies of a non-negative stochastic process

U(s) = exp{e(s) — o%(s)/2},

for an intrinsically-stationary Gaussian process €(s) with variance o*(s), €(0) = 0,
and semivariogram ~(h) = (h/p)" with range ¢ > 0 and smoothness k € (0, 2].
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Figure 2. Boxplot of empirical ECs against distance (left: original space; right: warped space), and

model EC curves.
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Application: Monthly Temperature Maxima over Nepal

= The bivariate joint distribution function of Z is
Pr{Z (s1) < z,7 (s2) < 25} =exp{—V (21, 22) }, where V Is the bivariate
exponent function
Vi(z1,20) = 21 ' ®{a/2 —a " log (21/2) } + 2 @ {a/2 — a"log (22/21)},
with @ = {2v(R)}/? and h = ||s1 — s4].
- Extremal coefficient (EC) measures extremal dependence between sites sy, s,
denoted 8(sy, 85) = V(1,1) = 20 {\/27 ) /2} c[1,9].
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Figure 3. Left: one observed monthly maxima (°C); right: elevation of the spatial domain.

« Pairwise likelihood (PL): ¢p; with dependence parameters 4 is

T
Upr(Y) = S: S: Cpr(2e1, 2t2;)
t=1 81,89€S8
where z;; is t-th block maxima at s; € W, and ¢py, represents the corresponding
pairwise log-density.
To save time = Careful choice of a suitable smaller number of pairs.

= Least squares inference through extremal coefficients: using empirical bivariate
extremal coefficients 65(s1, s9),

lrpc() = Z {éz(sl, o) — 0z(s1, 32\?,0)}2-

S$1,89€S

= The joint loss function: with the original spatial locations S, C G,

where the warped locations S,, = f(Sy; @, W) C W. Here W = {W,,... . W, },
® ={0...,0,} are weights and parameters in the DCM.
We can take £(1; S,,) to be either —¢py (1)) or Lrpc()).

References

Sampson, P. D. and Guttorp, P. (1992). Nonparametric estimation of nonstationary spatial covariance structure. Journal of the American Statistical

Association, 87(417):108-119.

Shao, X., Hazra, A., Richards, J., and Huser, R. (2022). Flexible modeling of nonstationary extremal dependence using spatially-fused LASSO and

ridge penalties. arXiv preprint arXiv:2210.05792.

Zammit-Mangion, A., Ng, T. L. J., Vu, Q., and Filippone, M. (2022). Deep compositional spatial models. Journal of the American Statistical Association,

117(540):1787-1808.

- Monthly maxima of daily average temperatures with D = 1417 sites and T' = 192
replications, with unit Fréchet margins.

= Previously analysed by Shao et al. (2022) with a locally-stationary model.

« Elevation information is further introduced, which improve the modeling of some
spatial areas, e.g., around Everest.

Figure 4. Left: empirical pairwise ECs; middle: fitted pairwise ECs (relative to a reference site; red)
based on the DCM with a Brown-Resnick process (using least squares inference); right: fitted
pairwise ECs incorporating elevation in G.

Future Work

= Extension to other extremal processes, e.g., r-Pareto processes, inverted BR.
= Modeling temporal changes, uncertainty assessment, new warping units.
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