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Introduction

Modeling non-stationarity in extremal dependence is challenging, while inference

for stationary and isotropic models is considerably easier.

Deformation approach (Sampson and Guttorp, 1992): warp the original domain G
to a latent space W where stationarity/isotropy can be reasonably assumed.

Consider a spatial process Z(·) on G with finite variance for each s ∈ S0 ⊂ G.
Estimation of the warping function f : G → W is problematic: computationally

expensive, lacking in flexibility, and not injective.

Deep composition modeling approach (Zammit-Mangion et al., 2022):

transformation is constructed using a series of n injective warping functions,

f (·) ≡ fn ◦ fn−1 ◦ · · · ◦ f1(·).
We present an extension of this methodology to spatial extremal processes, using

the R interface to TensorFlow 2.

Deep Compositional Model (DCM)

The DCM comprises n layers in a neural network, with

fi(s) = Wiφi (s; Θi) : Di−1 → Di, i = 1, . . . , n,

mapping the input to a di-dimensional output for Di ⊂ Rdi, D0 ≡ G, and Dn ≡ W .

φi (·; Θi): basis functions at the i-th layer with parameters Θi.

Wi: weights for the basis-functions at the i-th layer.

Different choices for φi lead to different types of warping units.

Axial Warping Unit (AWU): fi models nonlinear scaling of one input dimension.

Radial Basis Function (RBF): fi describs local expansions/contractions at

various resolutions.

Möbius Transformation: fi performs a rotation in the complex plane.

Brown–Resnick Process

Brown-Resnick (BR) Process

The Brown–Resnick process is a max-stable process that can be expressed as

Z(s) = sup
i≥1

Ui(s)/Pi,

where Pi’s are Poisson point processes on R+ with unit rate intensity, and Ui(s)
are i.i.d. copies of a non-negative stochastic process

U(s) = exp{ε(s) − σ2(s)/2}, s ∈ S,

for an intrinsically-stationary Gaussian process ε(s) with variance σ2(s), ε(0) a.s.= 0,
and semivariogram γ(h) = (h/ϕ)κ

with range ϕ > 0 and smoothness κ ∈ (0, 2].
The bivariate joint distribution function of Z is
Pr {Z (s1) ≤ z1, Z (s2) ≤ z2} = exp {−V (z1, z2)}, where V is the bivariate

exponent function

V (z1, z2) = z−1
1 Φ

{
a/2 − a−1 log (z1/z2)

}
+ z−1

2 Φ
{

a/2 − a−1 log (z2/z1)
}

,

with a = {2γ(h)}1/2 and h = ‖s1 − s2‖.
Extremal coefficient (EC) measures extremal dependence between sites s1, s2,

denoted θ(s1, s2) = V (1, 1) = 2Φ
{√

2γ (h)/2
}

∈ [1, 2].

Inference

Pairwise likelihood (PL): `PL with dependence parameters ψ is

`PL(ψ) =
T∑

t=1

∑
s1,s2∈S

`PL(zt,1, zt,2;ψ)

where zt,i is t-th block maxima at si ∈ W , and `PL represents the corresponding

pairwise log-density.

To save time ⇒ Careful choice of a suitable smaller number of pairs.

Least squares inference through extremal coefficients: using empirical bivariate

extremal coefficients θ̂2(s1, s2),

`EC(ψ) =
∑
s1,s2∈S

{
θ̂2(s1, s2) − θ2(s1, s2|ψ)

}2
.

The joint loss function: with the original spatial locations S0 ⊂ G,
L(ψ, Θ,W ;S0) = `(ψ;Sn),

where the warped locations Sn = f (S0; Θ,W ) ⊂ W . HereW = {W1, . . . ,Wn},
Θ = {Θ1, . . . , Θn} are weights and parameters in the DCM.
We can take `(ψ;Sn) to be either −`PL(ψ) or `EC(ψ).
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Simulation Study

Simulated data over a warped domain (generated with 2 AWUs and an RBF unit)

on a 101 × 101 grid are generated from a stationary BR process with ϕ = 0.1 and
κ = 1. D = 2000 locations are chosen randomly for inference, with 100
independent replications held out for training.

The deep compositional model consists of AWUs for each input axis, one RBF, and

a Möbius transformation. Both PL and EC inference methods are used to

reconstruct the warped space.

Computation time for PCL inference using 1% (100%) pairs is 1h (7h);

computation time for EC inference is generally less than 1h.
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Figure 1. Top: true (left), and fitted (PCL: middle; EC: right) space;

Bottom: theoretical and empirical pairwise ECs (1st, 2nd), fitted pairwise ECs (PCL: 3rd; EC: 4th)

relative to the reference site in red.
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Figure 2. Boxplot of empirical ECs against distance (left: original space; right: warped space), and

model EC curves.

Application: Monthly Temperature Maxima over Nepal
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Figure 3. Left: one observed monthly maxima (◦C); right: elevation of the spatial domain.

Monthly maxima of daily average temperatures with D = 1417 sites and T = 192
replications, with unit Fréchet margins.

Previously analysed by Shao et al. (2022) with a locally-stationary model.

Elevation information is further introduced, which improve the modeling of some

spatial areas, e.g., around Everest.
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Figure 4. Left: empirical pairwise ECs; middle: fitted pairwise ECs (relative to a reference site; red)

based on the DCM with a Brown-Resnick process (using least squares inference); right: fitted

pairwise ECs incorporating elevation in G.

FutureWork

Extension to other extremal processes, e.g., r-Pareto processes, inverted BR.
Modeling temporal changes, uncertainty assessment, new warping units.
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