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Motivation

•Quantifying probabilities of joint occurrence of extremes is important in risk analysis and applica-
tions in, e.g., finance, climate, neuroscience.

•Many models for multivariate extremal dependence make restrictive assumptions about joint tail
decay and do not scale well to high dimensions.

•Geometric extremes [1] is a flexible framework for modelling multivariate extremes that considers
the deterministic limiting shape of scaled sample clouds.

• Estimation in this framework is i) limited to a low-dimensional setting, ii) requires restrictive
parametric assumptions, or iii) provides estimates that do not satisfy theoretical properties.

•We provide new results for Geometric extremes that allow us to construct estimators that produce
valid model estimates. We exploit these in a deep learning framework to build flexible and scalable
models for multivariate extremal dependence.

Geometric representation of multivariate extremes

• For a d-dimensional random vector X ∈ Rd on standard Laplace margins, with density f (·).
•Given n independent realisations of X, consider the scaled sample cloud

Cn := {Xi/rn; i = 1, . . . , n},
as n → ∞, where rn is a suitably chosen normalising sequence.

•Under mild conditions Cn converges in probability onto the star-shaped and compact set

G := {x ∈ Rd : g(x) ≤ 1} ⊆ [−1, 1]d,

which intersects the boundary of [−1, 1]d at least once in each component.
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Figure 1. Scaled sample clouds of size n = 10, 000. Shaded regions and solid red lines give the limit
set G and its boundary ∂G, while the blue lines denote the set {w/Λ(w) : w ∈ Sd−1 \ A}.

•A sufficient condition for convergence onto G [2] is that

− log f (tx) ∼ tg(x), t → ∞, x ∈ Rd,

where g(·) is a continuous 1-homogeneous gauge function on Rd.

• [3] and [1] link ∂G to popular extremal dependence models. We can also use ∂G to get probabilities.

• For example, [4] assume that, as u → ∞,

Pr

(
min

i=1,...,d
{Xi} > u

)
= L(eu) exp(−u/η),

where L(·) is slowly-varying and η ∈ (0, 1] is the coefficient of tail dependence. Under asymptotic
dependence, we have η = 1 and limu→∞L(u) > 0.

• To connect this to ∂G, we have that

η = min
{
s ∈ (0, 1] : [s,∞]d ∩ ∂G = ∅

}
.

•Define (R,W ) by X 7→ (R,W ) := (∥X∥,X/∥X∥) for R > 0 and W ∈ Sd−1, where
Sd−1 := {x ∈ Rd : ||x|| = 1} denotes the unit (d− 1)-sphere and || · || is the Euclidean norm.

• Then
∂G := {rw : r > 0,w ∈ Sd−1, g(rw) = 1} = {w/g(w) : w ∈ Sd−1},

and so we only require a model for g(·) to estimate ∂G.

Theoretical developments

•Proposition: For all w ∈ Sd−1, the gauge function g(·) satisfies the constraint that
g(w) ≥ ||w||∞,

where ||x||∞ := max{|x1|, . . . , |xd|} denotes the infinity norm.

• Suppose we have any h(·) : Sd−1 7→ R+ that satisfies 1/h(w) ≥ ||w||∞ for all w ∈ Sd−1.
Proposition: Define the set

H :=

{
x ∈ Rd \ {0d}

∣∣∣∣ ||x|| ≤ h(x/||x||)
}⋃{

0d

}
,

where 0d := (0, . . . , 0). Then H is star-shaped, compact, and satisfies H ⊆ [−1, 1]d, with unit-

level set ∂H =
{
wh(w) : w ∈ Sd−1

}
.

• To ensure ∂H also satisfies the blue property, we perform a numerical rescaling during the estima-
tion procedure. This provides a new construction for valid (rescaled) gauge functions:

g̃(w) := 1

/∥∥∥∥∥h(κ−1(w))

(
κ−1(w)1

b1(κ−1(w)1)
, . . . ,

κ−1(w)d
bd(κ

−1(w)d)

)∥∥∥∥∥ ,
where κ(·) is a closed form bjiective mapping and bi(·), i = 1, . . . , d, are scaling coefficients.

•We extend [5] and assume that, for any w ∈ Sd−1 \ A, where A :=
⋃d
i=1{w ∈ Sd−1 : wi = 0}

is the intersection of Sd−1 with each axis,

Pr

(
min

i=1,...,d
{Xi/wi} > u

)
∼ L(eu;w) exp(−Λ(w)u), u → ∞, (1)

where Λ(w) denotes the (extended) angular dependence function (ADF).

• To link Λ to ∂G, we have Λ(w) = ||w||∞× r̃−1
w , where r̃w = max{r ∈ [0, 1] : rR̃w∩∂G ̸= ∅} and

R̃w :=
⊗

i=1,...,dUwi, with Uwi := [wi/||w||∞,∞] for wi > 0 and [−∞, wi/||w||∞] for wi < 0.
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Figure 2. Left: rescaling. Right: example probability regions that can be evaluated using model (1).

Modelling and inference with neural networks

• For conditional radial distribution R | (W = w), we follow [6] and assume that

R | (W = w, R > rτ (w)) ∼ truncGamma(α, g̃(w)),

where α > 0 and rτ (w) > 0 satisfies Pr{R ≤ rτ (w) | W = w} = τ for τ ∈ (0, 1) close to one.

• Then g̃(w) is the rate parameter for the gamma distribution on (R | W = w, R > rτ (w)) and
can be found via standard maximum likelihood techniques.

•We model rτ (w) and 1/h(w) as multi-layer perceptrons which take the angles w as their input.
These are designed so that rτ (w) > 0 and 1/h(w) ≥ ||w||∞ for all w ∈ Sd−1. The rescaling of
h(·) is then performed to get the (rescaled) gauge function g̃(w), w ∈ Sd−1.

•We estimate the conditional quantile rτ (w) using standard quantile regression techniques. Inference
for both this, and g̃(w), is performed using the R interface to the deep learning library Keras.

Application to metocean extremes

•NORA10 hindcast dataset
[NOrwegian ReAnalysis 10km, 7];

•Gridded, 3-hourly fields at 10 km resolution;

• September 1957 – December 2009;

•Wind speed (ws; m/s), significant wave height
(hs; m), mean sea level pressure (mslp; hPa);

•Uncertainty through stationary bootstrap.
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Figure 3. Study locations.
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Figure 4. Estimated unit-level set slices for north-east location.

Figure 5. Estimated limit set (left) and Λ(·) (right) for north-east location.
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Figure 6. Estimated unit-level set slices for d = 5 transect (black locations).
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