A deep learning approach to modelling joint environmental extremes Jordan Richards¹ with Callum J. R. Murphy-Barltrop^{2,3} and Reetam Majumder⁴

¹ University of Edinburgh, ² Technische Universität Dresden, ³ Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), ⁴ University of Arkansas

Motivation

- Quantifying probabilities of joint occurrence of extremes is important in risk analysis and applications in, e.g., finance, climate, neuroscience.
- Many models for multivariate extremal dependence make restrictive assumptions about joint tail decay and do not scale well to high dimensions.
- Geometric extremes [1] is a flexible framework for modelling multivariate extremes that considers the deterministic limiting shape of scaled sample clouds.
- Estimation in this framework is i) limited to a low-dimensional setting, ii) requires restrictive parametric assumptions, or iii) provides estimates that do not satisfy theoretical properties.
- We provide new results for *Geometric extremes* that allow us to construct estimators that produce valid model estimates. We exploit these in a deep learning framework to build **flexible** and **scalable** models for multivariate extremal dependence.

Geometric representation of multivariate extremes

- For a *d*-dimensional random vector $\boldsymbol{X} \in \mathbb{R}^d$ on standard Laplace margins, with density $f(\cdot)$.
- Given *n* independent realisations of **X**, consider the **scaled sample cloud**

- Define (R, \mathbf{W}) by $\mathbf{X} \mapsto (R, \mathbf{W}) := (\|\mathbf{X}\|, \mathbf{X}/\|\mathbf{X}\|)$ for $R > 0$ and $\mathbf{W} \in \mathcal{S}^{d-1}$, where $\mathcal{S}^{d-1} := \{ \boldsymbol{x} \in \mathbb{R}^d : ||\boldsymbol{x}|| = 1 \}$ denotes the unit $(d-1)$ -sphere and $|| \cdot ||$ is the Euclidean norm.
- Then

and so

$$
C_n:=\{\mathbf{X}_i/r_n;\ i=1,\ldots,n\},\
$$

as $n \to \infty$, where r_n is a suitably chosen normalising sequence.

• Under mild conditions C_n converges in probability onto the star-shaped and compact set $\mathcal{G} := \{\mathbf{x} \in \mathbb{R}^d: g(\mathbf{x}) \leq 1\} \subseteq [-1,1]^d,$

which intersects the boundary of $[-1, 1]$ ^d at least once in each component.

 $\mathbf{0}_d$ \bigcap ,

where $\mathbf{0}_d := (0, \ldots, 0)$. Then H is star-shaped, compact, and satisfies $\mathcal{H} \subseteq [-1, 1]^d$, with unitlevel set $\partial \mathcal{H} =$ \int $\boldsymbol{w} h(\boldsymbol{w}) : \boldsymbol{w} \in \mathcal{S}^{d-1} \bigr\}$.

• To ensure $\partial \mathcal{H}$ also satisfies the blue property, we perform a numerical rescaling during the estimation procedure. This provides a new construction for valid (rescaled) gauge functions:

> $\kappa^{-1}(\boldsymbol{w})_d$ b_d $\overline{(\kappa^{-1})}$ $(\boldsymbol{w})_d$) \setminus $\begin{array}{c} \hline \end{array}$ $\begin{array}{c} \hline \end{array}$ $\begin{array}{c} \hline \end{array}$ $\frac{1}{2}$,

 $(-\Lambda(\boldsymbol{w})u), \quad u \to \infty,$ (1)

Figure 1. Scaled sample clouds of size $n = 10,000$. Shaded regions and solid red lines give the limit set G and its boundary $\partial \mathcal{G}$, while the blue lines denote the set $\{w/\Lambda(w): w \in \mathcal{S}^{d-1} \setminus \mathcal{A}\}.$

• A sufficient condition for convergence onto \mathcal{G} [2] is that

$$
-\log f(t\mathbf{x}) \sim tg(\mathbf{x}), \ \ t\to\infty, \ \mathbf{x}\in\mathbb{R}^d,
$$

where $g(\cdot)$ is a continuous 1-homogeneous **gauge function** on \mathbb{R}^d .

- [3] and [1] link $\partial \mathcal{G}$ to popular extremal dependence models. We can also use $\partial \mathcal{G}$ to get probabilities.
- For example, [4] assume that, as $u \to \infty$,

$$
\Pr\left(\min_{i=1,\dots,d} \{X_i\} > u\right) = L(e^u) \exp(-u/\eta),
$$

where $L(\cdot)$ is slowly-varying and $\eta \in (0,1]$ is the **coefficient of tail dependence**. Under asymptotic dependence, we have $\eta = 1$ and $\lim_{u \to \infty} L(u) > 0$.

• To connect this to $\partial \mathcal{G}$, we have that

- NORA10 hindcast dataset
- [NOrwegian ReAnalysis 10km, 7];
- Gridded, 3-hourly fields at 10 km resolution;
- September 1957 December 2009;
- Wind speed (ws; m/s), significant wave height (hs; m), mean sea level pressure (mslp; hPa);
- Uncertainty through stationary bootstrap.

$$
\eta = \min \left\{ s \in (0,1] : [s,\infty]^d \cap \partial \mathcal{G} = \emptyset \right\}.
$$

$$
\partial \mathcal{G} := \{ r\mathbf{w} : r > 0, \mathbf{w} \in \mathcal{S}^{d-1}, g(r\mathbf{w}) = 1 \} = \{ \mathbf{w}/g(\mathbf{w}) : \mathbf{w} \in \mathcal{S}^{d-1} \}
$$

we only require a model for $g(\cdot)$ to estimate $\partial \mathcal{G}$.

Theoretical developments

- -

-
- -1 ן -
- Proposition: For all $w \in S^{d-1}$, the gauge function $g(\cdot)$ satisfies the constraint that $g(\boldsymbol{w}) \geq ||\boldsymbol{w}||_{\infty},$
- where $||\boldsymbol{x}||_{\infty} := \max\{|x_1|, \ldots, |x_d|\}$ denotes the infinity norm. • Suppose we have any $h(\cdot): S^{d-1} \mapsto \mathbb{R}_+$ that satisfies $1/h(\boldsymbol{w}) \ge ||\boldsymbol{w}||_{\infty}$ for all $\boldsymbol{w} \in S^{d-1}$. Proposition: Define the set

$$
\mathcal{H}:=\left\{\boldsymbol{x}\in\mathbb{R}^d\setminus\{\boldsymbol{0}_d\}\ \bigg|\ ||\boldsymbol{x}|| \leq h(\boldsymbol{x}/||\boldsymbol{x}||)\right\}\bigcup\bigg\{
$$

$$
\tilde{g}(\boldsymbol{w}) := 1 \Big/ \left\| h(\kappa^{-1}(\boldsymbol{w})) \left(\frac{\kappa^{-1}(\boldsymbol{w})_1}{b_1(\kappa^{-1}(\boldsymbol{w})_1)}, \dots, \right. \right\|_{\text{local forms, b} \text{ l.oatz}} \Big\|_{\text{nonlocal}}.
$$

where $\kappa(\cdot)$ is a closed form bjiective mapping and $b_i(\cdot), i = 1, \ldots, d$, are scaling coefficients. • We extend [5] and assume that, for any $w \in S^{d-1} \setminus A$, where $A := \bigcup_{i=1}^d \{w \in S^{d-1} : w_i = 0\}$ is the intersection of S^{d-1} with each axis,

$$
\Pr\left(\min_{i=1,\dots,d} \{X_i/w_i\} > u\right) \sim L(e^u; \boldsymbol{w}) \exp(n)
$$

where $\Lambda(\boldsymbol{w})$ denotes the (extended) angular dependence function (ADF). • To link Λ to $\partial \mathcal{G}$, we have $\Lambda(\boldsymbol{w}) = ||\boldsymbol{w}||_{\infty} \times \tilde{\mathfrak{r}}_{\boldsymbol{w}}^{-1}$, where $\tilde{\mathfrak{r}}_{\boldsymbol{w}} = \max\{\mathfrak{r} \in [0,1]: \mathfrak{r} \tilde{\mathcal{R}}_{\boldsymbol{w}} \cap \partial \mathcal{G} \neq \emptyset\}$ and $\tilde{\mathcal{R}}_{\mathbf{w}} := \bigotimes_{i=1,\dots,d} \mathcal{U}_{w_i}$, with $\mathcal{U}_{w_i} := [w_i/||\mathbf{w}||_{\infty}, \infty]$ for $w_i > 0$ and $[-\infty, w_i/||\mathbf{w}||_{\infty}]$ for $w_i < 0$.

Figure 2. Left: rescaling. Right: example probability regions that can be evaluated using model (1).

Modelling and inference with neural networks

- For conditional radial distribution $R \mid (W = w)$, we follow [6] and assume that $R | (\boldsymbol{W} = \boldsymbol{w}, R > r_{\tau}(\boldsymbol{w})) \sim \text{truncGamma}(\alpha, \tilde{q}(\boldsymbol{w})).$
- where $\alpha > 0$ and $r_\tau(\boldsymbol{w}) > 0$ satisfies $Pr\{R \le r_\tau(\boldsymbol{w}) \mid \boldsymbol{W} = \boldsymbol{w}\} = \tau$ for $\tau \in (0, 1)$ close to one. • Then $\tilde{g}(\boldsymbol{w})$ is the rate parameter for the gamma distribution on $(R | \boldsymbol{W} = \boldsymbol{w}, R > r_{\tau}(\boldsymbol{w}))$ and
- can be found via standard maximum likelihood techniques. • We model $r_{\tau}(\boldsymbol{w})$ and $1/h(\boldsymbol{w})$ as multi-layer perceptrons which take the angles \boldsymbol{w} as their input. These are designed so that $r_{\tau}(\boldsymbol{w}) > 0$ and $1/h(\boldsymbol{w}) \ge ||\boldsymbol{w}||_{\infty}$ for all $\boldsymbol{w} \in S^{d-1}$. The rescaling of h(·) is then performed to get the (rescaled) gauge function $\tilde{g}(\boldsymbol{w})$, $\boldsymbol{w} \in \mathcal{S}^{d-1}$.
- We estimate the conditional quantile $r_{\tau}(\boldsymbol{w})$ using standard quantile regression techniques. Inference for both this, and $\tilde{g}(\boldsymbol{w})$, is performed using the R interface to the deep learning library Keras.

Application to metocean extremes

References

[1] N. Nolde and J. L. Wadsworth, "Linking representations for multivariate extremes via a limit set," Advances in Applied Probability, vol. 54, pp. 688–717, 3

- 2022.
-
-
-
-
- B: Methodology, vol. 2208.14951, 2024.
- the norwegian sea, and the barents sea," Journal of Geophysical Research, vol. 116, p. C05019, C5 May 2011.
-

Figure 5. Estimated limit set (left) and $\Lambda(\cdot)$ (right) for north-east location.

[2] G. Balkema and N. Nolde, "Asymptotic independence for unimodal densities," Advances in Applied Probability, vol. 42, pp. 411–432, 2 2010. [3] N. Nolde, "Geometric interpretation of the residual dependence coefficient," Journal of Multivariate Analysis, vol. 123, pp. 85–95, 2014. [4] A. W. Ledford and J. A. Tawn, "Statistics for near independence in multivariate extreme values," *Biometrika*, vol. 83, pp. 169–187, 1 1996. [5] J. L. Wadsworth and J. A. Tawn, "A new representation for multivariate tail probabilities," Bernoulli, vol. 19, pp. 2689–2714, 5 B 2013. [6] J. L. Wadsworth and R. Campbell, "Statistical inference for multivariate extremes via a geometric approach," Journal of the Royal Statistical Society Series

[7] M. Reistad, Øyvind Breivik, H. Haakenstad, O. J. Aarnes, B. R. Furevik, and J.-R. Bidlot, "A high-resolution hindcast of wind and waves for the north sea,

[8] C. J. Murphy-Barltrop, R. Majumder, and J. Richards, "Deep learning of multivariate extremes via a geometric representation," $arXiv:2406.19936$, 2024.