Causal Analysis for Both Tails in Time Series: With Application to China's Derivatives Market

Junshu Jiang, Jordan Richards, Raphaël Huser, David Bolin

Introduction

- Motivation: existing literature on causality in multivariate extreme value theory tends to overlook the interaction between the upper and lower tails of random variables.

Contribution: 1) we propose a new method to detect causal relationships for both tails of time series. 2) we contribute a highfrequency dataset from China's derivatives market.

Regular variation in a transformed space

- Regular variation $\mathbf{X} \in R V_{+}^{p}(\alpha)$ is often assumed in multivariate extreme statistics; \mathbf{X} has tail decay according to a power-law with index α and an angular measure $H_{\mathbf{X}}(\cdot)$ on the unit sphere $\mathbb{S}_{p-1}^{+}=\left\{\mathbf{x} \in \mathbb{R}_{+}^{p}:\|\mathbf{x}\|_{2}=1\right\}$.
- With $t(x)=\log (\exp (x)+1)$, the space $\mathbb{X}^{p}=\left\{t(\mathbf{x}): \mathbf{x} \in \mathbb{R}^{p}\right\}$ is an inner product space (Cooley \& Thibaud, 2019) with transformed linear operations (Table 1)

Operation	Definition
addition	$x_{1} \oplus x_{2}=t\left(t^{-1}\left(x_{1}\right)+t^{-1}\left(x_{2}\right)\right)$
scalar multiply	$a \circ x=t\left(a t^{-1}(x)\right)$
imner product	$\left\langle x_{1}, x_{2}\right\rangle=\sum_{i=1}^{p} t^{-1}\left(x_{1 i}\right) t^{-1}\left(x_{2 i}\right)$

Figure $1:$ Transformed operations

Regular variation is preserved in \mathbb{X}^{p}

- Tail Pairwise Dependence Matrix (TPDM) summarizes extremal dependence: $\Sigma_{\mathbf{X}}=\left\{\sigma_{i j}\right\}$, where $\sigma_{i j}=\int_{\mathbb{S}^{+}} w_{i} w_{j} \mathrm{~d} H_{\mathbf{X}}(\mathbf{w})$.
- Partial Tail Correlation Coefficient (PTCC):
$\gamma_{i j \mid} \mathbf{X}_{-i j}=\frac{\left\langle X_{i} \ominus \widehat{X}_{i}, X_{j} \ominus \widehat{\bigotimes}_{j}\right\rangle}{\left\|X_{i} \ominus \widehat{X}_{i}\right\|\left\|X_{i} \ominus \widehat{X}_{i}\right\|} ; \mathbf{X}_{-\mathbf{i j}}$ is \mathbf{X} without $\left(X_{i}, X_{j}\right)$ and $\widehat{X_{i}}$ is the optimal transformed predictor for X_{i} given $\mathbf{X}_{-\mathbf{i j}}$
We can test for partial tail uncorrelatedness $\left(\gamma_{i j \mid \mathbf{X}_{-\mathrm{ij}}}=0\right)$ denoted as $X_{i} \perp_{p} X_{j} \mid \mathbf{X}_{-\mathrm{ij}}$, following (Lee \& Cooley, 2022).

Transformed linear causal model
Let $X_{i}^{u}=T\left(X_{i}^{\text {original }}\right), X_{i}^{d}=T\left(-X_{i}^{\text {original }}\right) \in R V_{+}(2)$.
For $\mathbf{X}^{\text {original }} \in \mathbb{R}^{p}$, construct $\mathbf{X}=\left[X_{1}^{u}, X_{1}^{d}, \ldots\right]^{\prime} \in R V_{+}^{2 p}(2)$

Inference for one tail

Structured Causal Model (SCM) represented by a Directed Acyclic Graph (DAG) needs 1) a graph G; 2) a causal equation system $X_{i}^{u}:=\eta_{i}^{u} \oplus \bigoplus_{X_{i}^{u} \in P a\left(X_{i}^{u}\right)} X_{i}^{u} \circ \beta_{j \rightarrow i}^{u}$. The parameter space for this model is $\Theta_{1}=(C, B)$, where C stores β and $B=\operatorname{diag}\left(\sigma_{\eta_{1}}, \ldots\right)$. Theorem $1 \Sigma_{\mathbf{X}^{u}}=(I-C)^{-1} B\left[(1-C)^{-1}\right]^{\prime}$ (system's TPDM)
We propose learning the SCM by PCMCI ${ }^{+}$(Runge, 2020) and PTCC
Phase 1: Skeleton discovery - iteratively test $X_{i} \perp_{p} X_{j} \mid \mathbf{X}_{-\mathrm{ij}}$ Phase 2: Edge orientation, which gives the causal direction

Application: Danube dataset

Danube data contains daily river discharges $(\mathrm{n}=428)$ from 31 stations. Here we estimate SCM and do comparison with: (Lee \& Cooley, 2022), (Engelke \& Hitz, 2020), and (Gong et al., 2022)

Application: high-frequency
 China's derivatives market

New Dataset collection

- It is a thriving market (turnover is 87 trillion $¥ \mathrm{CNY}$ in 2021) - Include orderbook (2 records/sec); 80 million records a day; - Potential research topics: data mining, risk-contagions, market efficiency and microstructure, high-frequency trading.

Figure 3 : Derivative products for China's derivatives market

Estimation of causal structure

- 21 products, 4 sectors (color metal, chemicals,...). - Results show one-step (5 seconds) forward SCM (Figure 4) - Most are symmetric, suggesting market's efficiency in tails

Transformed linear causal model for both tails

- Since the orthogonality constraint $\sigma_{\left(X_{i}^{u}, X_{i}^{d}\right)}=0$ exists
- $X_{i}^{u}:=I_{i}\left[\eta_{i}^{u} \oplus \bigoplus_{X_{j}^{e} \in P a\left(X_{i}^{u}\right)} X_{i}^{e} \circ \beta_{j \rightarrow i}^{e}\right]$;
$X_{i}^{d}:=\left(1-I_{i}\right)\left[\eta_{i}^{d} \oplus \oplus_{X_{i}^{e} \in P a\left(X_{i}^{d}\right)} X_{i}^{e} \circ \beta_{j \rightarrow i}^{e}\right]$
- Swither $I_{i}=\mathbf{1}\left(X_{i}^{\text {ori }}>0\right)$ are binary R.Vs (Illustrated in Figure 5).

Conclusion

- We propose a transformed causal model which can nicely model the causal structure for both tails of time series data
- Most of the lead-lag dependence relationship are symmetric in China's derivatives market
- Interaction between both tails should receive more attention.
- We build a high-frequency dataset for China's derivatives market.

References

Cooley, D., \& Thibaud, E. (2019). Decompositions of dependence for highCooley, D., \& Thibaud, E. (2019). Decomposition
dimensional extremes. Biometrika, 106(3), 587-604.
 Statistical Society Series B: Methodology, 82(4), 871-932.
Gong, Y., Zhong, P., Opitz, T., \& Huser, R. (2022). Partial tail-correlation coefficient
applied to extremal-network learning arXiv Preprint arXiv:22l applied to extremal-network learning. arXiv Preprint arXiv:2210.07351.
Lee, J., \& Cooley,
arXiv:2210.02048.
arxiv:2210.02048. D. (2022). Partial tail correlation for extremes. arXiv Preprint
Runge, J. (2020). Discovering Runge, J. (2020). Discovering contemporaneous and lagged causal relations in
uutocorrelated nonlinear time series datasets. Conference on autocorrelated nonlinear time series datasets. Conference on Uncertainty in Artificial
Intelligence, 1388-1397.

