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e Motivation: existing literature on causality 1n multivariate Let X; X, — X, ) € RV, (2

extreme value theory .tends to overloqk the interaction between For Xomgmal c R®, construct X = [ X, de, L] e vap (2).
the upper and lower tails of random variables. .
Inference for one tail

Structured Causal Model (SCM) represented by a Directed Acyclic
Graph (DAG) needs 1) a graph G ; 2) a causal equation system:
Xi =0 © @ xucpa(xn Xi' © By ;- The parameter space for this

model is ©; = (C, B), where C stores 8 and B = diag(oy,,. . .).

Sto‘ChProc

Stochastic Processes and Applied Statistic

New Dataset collection

e Since the orthogonality constraint o' xu x4y = 0 exists:

e It is a thriving market (turnover is 87 trillion ¥ CNY in 2021) « X' :=Lin'®¢

e Include orderbook (2 records/sec); 80 million records a day; x4 .

e Potential research topics: data mining, risk-contagions, market Z
efficiency and microstructure, high-frequency trading.
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e Swither I; = 1(X ,f"“i > 0) are binary R.Vs (Illustrated in Figure 5).

e Contribution: 1) we propose a new method to detect causal
relationships for both tails of time series. 2) we contribute a high-
frequency dataset from China’s derivatives market.
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e Regular variation X € RV.”(«) is often assumed in multivariate

extreme statistics; X has tail decay according to a power-law
with index a and an angular measure Hx (-) on the unit sphere

S, = {x € B : [|x[|, = 1}.

Phase 1: Skeleton discovery - iteratively test X; L, X,|X _;;

Figure 3: Derivative products for China’s derivatives market

Figure 5: Left: one example of a causal graph for generalized transformed linear causality. Right: Causal matrix C
for those 4 variables.

Estimation of causal structure

Phase 2: Edge orientation, which gives the causal direction

e 21 products, 4 sectors (color metal, chemicals,...).
e Results show one-step (5 seconds) forward SCM (Figure 4)
e Most are symmetric, suggesting market’s efficiency 1n tails

e With t(x) = log(exp(z) + 1), the space X¥ = {t(x) : x € R"}
1s an 1nner product space (Cooley & Thibaud, 2019) with

Danube data contains daily river discharges (n=428) from 31
transformed linear operations (Table 1).

stations. Here we estimate SCM and do comparison with: (Lee &

e We propose a transformed causal model which can nicely model
the causal structure for both tails of time series data.

a.u [] 0.10
b.u . . . .
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* % / P \ s v
g 1 - s mj Y 2 \:’ $ cau.ﬂ
Figure 1: Transformed operations . ¢ xm}, ,g’“[ ﬁﬁ:ﬂ B
Regular variation is preserved in X” P . 0.06
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as X; 1, X;|X_j;, following (Lee & Cooley, 2022).

Figure 2: Comparison for Danube river discharge dataset; our model can show direction and temporal dependence.

Figure 4: One-step forward causality for the China's derivatives return; quantified by PTCC.



