
Introduction
Motivation: existing literature on causality in multivariate
extreme value theory tends to overlook the interaction between
the upper and lower tails of random variables.
Contribution: 1) we propose a new method to detect causal
relationships for both tails of time series. 2) we contribute a high-
frequency dataset from China’s derivatives market.

Regular variation in a transformed
space

Regular variation  is often assumed in multivariate
extreme statistics;  has tail decay according to a power-law
with index  and an angular measure  on the unit sphere

.

With , the space 
is an inner product space (Cooley & Thibaud, 2019) with
transformed linear operations (Table 1).

Figure 1: Transformed operations

Regular variation is preserved in 

Tail Pairwise Dependence Matrix (TPDM) summarizes extremal
dependence: , where d .
Partial Tail Correlation Coefficient (PTCC):

;  is  without  and  is

the optimal transformed predictor for  given  .

We can test for partial tail uncorrelatedness ( ) denoted
as , following (Lee & Cooley, 2022).

Transformed linear causal model
Let , .

For , construct .
Inference for one tail
Structured Causal Model (SCM) represented by a Directed Acyclic
Graph (DAG) needs 1) a graph ; 2) a causal equation system:

. The parameter space for this
model is , where  stores  and .

Theorem 1  (system’s TPDM)

We propose learning the SCM by PCMCI  (Runge, 2020) and
PTCC

Phase 1: Skeleton discovery - iteratively test 

Phase 2: Edge orientation, which gives the causal direction

Application: Danube dataset
Danube data contains daily river discharges (n=428) from 31
stations. Here we estimate SCM and do comparison with: (Lee &
Cooley, 2022), (Engelke & Hitz, 2020), and (Gong et al., 2022)

Figure 2: Comparison for Danube river discharge dataset; our model can show direction and temporal dependence.

Application: high-frequency
China’s derivatives market

New Dataset collection

It is a thriving market (turnover is 87 trillion ￥CNY in 2021)
Include orderbook (2 records/sec); 80 million records a day;
Potential research topics: data mining, risk-contagions, market
efficiency and microstructure, high-frequency trading.

Figure 3: Derivative products for China’s derivatives market

Estimation of causal structure

21 products, 4 sectors (color metal, chemicals,…).
Results show one-step (5 seconds) forward SCM (Figure 4)
Most are symmetric, suggesting market’s efficiency in tails

Figure 4: One-step forward causality for the China`s derivatives return; quantified by PTCC.

Transformed linear causal model
for both tails

Since the orthogonality constraint  exists:
;

Swither  are binary R.Vs (Illustrated in Figure 5).

Figure 5: Left: one example of a causal graph for generalized transformed linear causality. Right: Causal matrix 
for those 4 variables.

Conclusion
We propose a transformed causal model which can nicely model
the causal structure for both tails of time series data.
Most of the lead-lag dependence relationship are symmetric in
China’s derivatives market.
Interaction between both tails should receive more attention.
We build a high-frequency dataset for China’s derivatives market.
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