

Abstract

We develop a new conditional extremal dependence measure that captures the strength of relationship (beyond linear dependence) between two random variables in a tail region given other variables in a network.

Advantages:

(i) model-free;

(ii) computed in time $O(n \log n)$;

- (iii) inference using a nonparametric test.
- Difference be-Motivation: tween classical and extremal brain connectivity.

Caveat: We define extremal dependence as the dependence between variables in a tail region which is not equivalent to asymptotic dependence, i.e., $\lim_{u\to 1} \mathbb{P}(Y > F_V^{-1}(u) \mid X > F_X^{-1}(u)) > 0.$

Estimation: Suppose data consist of iid triples $(X_i, Y_i, Z_i)^{\top}, i = 1, \ldots, m$. For a quantile level u, define new obs. $(X_i^*, Y_i^*, Z_i^*)^\top$ such that $X_i^* > F_X^{-1}(u)$ for all j = 1, ..., n. The estimator of $\xi_u(X, Y \mid Z)$ is

$$\hat{\xi}_{u}(X, Y \mid Z) = \frac{\sum_{j=1}^{n} (\min\{R_{j}, R_{M(j)}\} - \min\{R_{j}, R_{j}\})}{\sum_{j=1}^{n} (R_{j} - \min\{R_{j}, R_{N(j)}\})}$$

where R_i is the rank of Y_i^* , N(j) is the index k such that Z_k^* is the nearest neighbor of Z_i^* on \mathbb{R} , and M(j) is the index k such that $(X_{\ell}^*, Z_{\ell}^*)^{\top}$ is the nearest neighbor of $(X_i^*, Z_i^*)^{\top}$ in \mathbb{R}^2 .

Test for Independence in the Tail Region C_u :

Suppose we wish to test the null hypothesis that X and Yare independent in the tail region C_u given Z, i.e.,

 $H_0: \xi_u(X, Y \mid Z) = 0$ vs. $H_1: \xi_u(X, Y \mid Z) \neq 0.$

We construct the empirical null distribution of the estimator $\xi_u(X, Y \mid Z)$ by simple "reshuffling" of adjacent ranks.

A New Dependence Measure for Extremal Brain Connectivity

Paolo Victor Redondo^{*}, Jordan Richards, Raphaël Huser, Hernando Ombao King Abdullah University of Science and Technology, Saudi Arabia.

Outline:

- 1. Generate independent random permutations of $R_{M(j)}$ and $R_{N(j)}$.
 - 2. Calculate $\hat{\xi}_u(X, Y \mid Z)$ based on the reshuffled ranks and denote by $\hat{\xi}_u^{(b)}(X, Y \mid Z)$.
 - 3. Compute p-value as $|\{\hat{\xi}_u^{(b)}(X, Y \mid Z) \geq \hat{\xi}_u(X, Y \mid Z)\}|/B$, where B is the number of reshuffles considered.
- . Given significance $\alpha \in (0,1)$, reject the null hypothesis if the p-value is less than α . Otherwise, do not reject H_0 .

$$\frac{t \mid X^*, Z^*) \mid Z^*)] d\mu^*(t)}{\{Y^* \ge t\} \mid Z^*)] d\mu^*(t)} \in [0, 1],$$

Motor Movement/Imagery EEG Analysis

tasks from ten volunteers.

Data: EEG recordings (at 160 Hz) during performance of motor-related

Tasks: (i) actual movement (open/close fist), and (ii) imaginary action.

Selected Channels: C3, Cz and C4 – body sensory and motor functions; P3, Pz and P4 – facilitate accurate upper limb movements.

Novel Findings:

- ► There is a direct link (represented by a red line) between two channels when their signals are conditionally dependent given all other channels in the network
- **Bulk**: Similar systematic brain connectivity for the two tasks.
- ► Tail: Prominent direct links in the parietal region when performing actual movement while conditional independence during imaginary action.

Future Work:

Develop a causal extremal measure, e.g., $\xi_u(X_{t-k}, Y_t \mid Y_{t-\ell})$.

