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Background
▶ Increase in the power of high frequencies has been found in brain signals during the

onset of an epileptic seizure.
▶ Hypothesis: By analyzing the tail of the brain energy distribution during high-

frequency oscillations, we can reveal key channels that could trigger bursts of elec-
trical activity in brain signals.

▶ Key channels that induce seizures may only reveal themselves during the burst-phase.
▶ Contributions: (a) metric for the comparison of tail associations of bursts for ictal

and non-ictal neonates; and (b) reveal key channels in brain connectivity of patients
at risk of epilepsy.

Time-Frequency Analysis for Non-stationary Series

Time-Varying Periodogram:
▶ X(t) is a locally stationary time series
▶ At time block b of length M, compute the local periodogram:
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where 𝜔𝑘 = 𝑘/(SR × seconds)
▶ Compute the periodograms at the frequency bands delta (0 - 4 Hertz (Hz)), theta

(4 - 8 Hz), alpha (8 - 12 Hz), beta (12 - 30 Hz), and gamma (30 - 50 Hz). The
periodogram at band Ω is equation 𝐼 (𝑏,Ω) = 1/| |Ω | |∑𝜔𝑘 ∈Ω 𝐼 (𝑏, 𝜔𝑘 ).

Spectral Clustering can be used for quicker detection of burst and suppression phase in
EEG [2]. Consider the similarity measure of blocks contained in matrix S such that 𝑆𝑏,𝑏′ is

the similarity between two blocks 𝑏 and 𝑏
′ , given as: 𝑆𝑏,𝑏′ = exp

(
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,

▶ Let L = D − S, where D = 𝑑𝑖𝑎𝑔{𝑑1, 𝑑2, ..., 𝑑𝐵=1000} and 𝑑𝑖 is the degree of a vertex
𝜈𝑏 =

∑𝐵
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𝑆𝑏,𝑏′ . The clustering is done by performing k-means on eigenvectors of
𝐿𝑢 = 𝜆𝐷𝑢.

Framework
Consider four channels at the temporal lobe namely T3, . . . , T6 indexed by 𝑝 = 1, . . . , 4.
DEC Model is defined for 𝑰𝑑 (𝑏, 𝜔) := (𝐼1,𝑑 (𝑏,𝜔), . . . , 𝐼4,𝑑 (𝑏, 𝜔))′. Denote by 𝑰 −𝑝,𝑑 (𝑏,𝜔)
the vector 𝑰𝑑 (𝑏, 𝜔) with its 𝑝𝑡ℎ component removed; 𝑑 = 1 and 𝑑 = 2 correspond to
burst and non-burst phases. Then, for all 𝑢𝑝,𝑑 > 𝑣𝑝,𝑑 for some high threshold 𝑣𝑝,𝑑 > 0,
the [1] model asserts that(

𝑰 −𝑝,𝑑 (𝑏, 𝜔)
���� 𝐼𝑝,𝑑 (𝑏,𝜔) = 𝑢𝑝,𝑑

)
= 𝝓−𝑝,𝑑 𝐼𝑝,𝑑 (𝑏,𝜔) + 𝐼𝑝,𝑑 (𝑏, 𝜔)𝝍−𝑝,𝑑 𝒁−𝑝,𝑑 (𝑏,𝜔), (1)

with parameter vectors 𝝓−𝑝,𝑑 ∈ [−1, 1]3 and 𝝍−𝑝,𝑑 ∈ (−∞, 1)3 dependent on channel
𝑝 and phase-type 𝑑 ∈ {1, 2}. 𝒁−𝑝,𝑑 (𝑏, 𝜔) ∼ MVN(𝝁−𝑝,𝑑 , 𝚺−𝑝,𝑑 ) for mean vector and
covariance matrix 𝝁−𝑝,𝑑 and 𝚺−𝑝,𝑑 , respectively.

▶ Conditional expectation combines information from both 𝝓−𝑝,𝑑 and 𝝍−𝑝,𝑑 : 𝑚𝑝,𝑞;𝑑 (𝜔) = 𝐸 [𝐼𝑞,𝑑 (𝑏, 𝜔) |𝐼𝑝,𝑑 (𝑏,𝜔) = 𝑢𝑝,𝑑 ] = 𝜙−𝑝,𝑞;𝑑𝑢𝑝,𝑑 + 𝑢𝜓−𝑝,𝑞;𝑑
𝑝,𝑑

𝜇−𝑝,𝑞;𝑑 𝑗 , 𝑝 ≠ 𝑞, [3]
▶ Bootstrap: We used a non-parametric bootstrap to estimate parameter uncertainty of the DEC model. For each clusters, we resampled the blocks then re-fitted the DEC

model to each resamples to obtain bootstrap estimates for 𝜙p,q;d and conditional mean difference (i.e., 𝑚𝑑𝑖 𝑓 𝑓 =𝑚𝑝,𝑞;1 −𝑚𝑝,𝑞;2) for all pairwise combination of channels.

Subject Level Results and Future Work
Subject Level Analysis: Future Work:

▶ Multi-subject DEC; utilize Extreme Vector Autoregressive Model with subject-

specific effects:
(
𝑰 (𝑠 )−𝑖 (𝑏, 𝜔)

���� 𝐼
(𝑠 )
𝑖

(𝑏, 𝜔) = 𝑢
(𝑠 )
𝑖

)
= 𝑭 (𝑠 ) (𝑏,𝜔) + 𝑫 (𝑠 ) (𝑏, 𝜔); for all

𝑢
(𝑠 )
𝑖

> 𝑣
(𝑠 )
𝑖

.
▶ 𝑭 (𝑠 ) (𝑏,𝜔) is the subject-specific fixed-effects, while 𝑫 (𝑠 ) (𝑏, 𝜔) has the subject-specific

tail connectivity matrices of four clusters. We will use D to represent the DEC model.
▶ The simplest case of 𝐷 (𝑠 ) (𝑏 + ℎ,𝜔) = 𝐷

(𝑠 )
𝜔 (𝑏 + ℎ) is for lag 1 fixing 𝚿 = 0 which is

given by:
𝑫 (𝑠 )
𝜔 (𝑏) = [𝚽(𝑠 )

1,1𝐸
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1,𝑏 + 𝚽

(𝑠 )
2,1𝐸

(𝑠 )
2,𝑏 ]𝑫

(𝑠 )
𝜔 (𝑏 − 1) + 𝒆 (𝑠 ) (𝑏)

where 𝐸
(𝑠 )
𝑐,𝑏

= 𝐸
(𝑠 )
𝑐 (𝑏,𝜔) is 1 when the block is in extreme set of cluster 𝑐 and 0

otherwise. The term 𝒆 (𝑠 ) (𝑏) is a zero-mean white noise multivariate process.
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