

		Background				
	Increa onset Hypo freque trical Key c Conte and n at risk	ise in the po of an epilep thesis: By ency oscillat activity in hannels that ributions : (on-ictal nec < of epilepsy	ower of high for otic seizure. / analyzing the ions, we can for brain signals. t induce seizur (a) metric for onates; and (b	f requencies ne tail of t reveal key c res may only the compa o) reveal key	has been fou the brain ener hannels that c rison of tail as y channels in [nd in b gy dis could t elves du ssociat brain c
	Tir	ne-Freq	Juency A	nalysis	for Non-s	statio
Ga	amma – Beta – Alpha – Theta – Delta –					
			20	1	60	0

Time-Varying Periodogram:

- X(t) is a locally stationary time series
- At time block b of length M, compute the local periodogram:

$$I(b, \omega_k) = \frac{1}{M} \left| \sum_{t \in b} X(t) \exp(-i2\pi\omega_k t) \right|^2$$

where $\omega_k = k/(SR \times seconds)$

- Compute the periodograms at the frequency bands delta (0 4 Hertz (Hz)), theta (4 - 8 Hz), alpha (8 - 12 Hz), beta (12 - 30 Hz), and gamma (30 - 50 Hz). The periodogram at band Ω is equation $I(b, \Omega) = 1/||\Omega|| \sum_{\omega_k \in \Omega} I(b, \omega_k)$. **Spectral Clustering** can be used for quicker detection of burst and suppression phase in EEG [2]. Consider the similarity measure of blocks contained in matrix S such that $S_{h h'}$ is the similarity between two blocks b and b', given as: $S_{b,b'} = \exp\left(-\frac{||(\Sigma(h=0,b),\Sigma(h=0,b'))||_F^2}{2\gamma}\right)$, Let L = D - S, where $D = diag\{d_1, d_2, ..., d_{B=1000}\}$ and d_i is the degree of a vertex
- $v_b = \sum_{i=b}^{B} S_{b,b'}$. The clustering is done by performing k-means on eigenvectors of $Lu = \lambda Du$.

DUAL EXTREMAL CROSS-FREQUENCY INTERACTIONS IN BRAIN CONNECTIVITY

Mara Sherlin Talento ¹, Jordan Richards ¹, Marco Pinto ², Hernando Ombao ¹,

¹King Abdullah University of Science and Technology, Saudi Arabia. ²University of California, Irvine

prain signals during the

stribution during highrigger bursts of elec-

uring the **burst-phase**. ions of bursts for ictal connectivity of patients

Consider four channels at the temporal lobe namely T3, ..., T6 indexed by p = 1, ..., 4. **DEC Model** is defined for $I_d(b, \omega) := (I_{1,d}(b, \omega), \dots, I_{4,d}(b, \omega))'$. Denote by $I_{-p,d}(b, \omega)$ the vector $I_d(b,\omega)$ with its p^{th} component removed; d=1 and d=2 correspond to burst and non-burst phases. Then, for all $u_{p,d} > v_{p,d}$ for some high threshold $v_{p,d} > 0$, the [1] model asserts that

$$\left(I_{-p,d}(b,\omega) \mid I_{p,d}(b,\omega) = u_{p,d}\right) = \phi_{-p,d}I_{p,d}(b,\omega) + I_{p,d}(b,\omega)\Psi_{-p,d} Z_{-p,d}(b,\omega), \quad (1)$$

with parameter vectors $\phi_{-p,d} \in [-1,1]^3$ and $\psi_{-p,d} \in (-\infty,1)^3$ dependent on channel p and phase-type $d \in \{1,2\}$. $Z_{-p,d}(b,\omega) \sim \text{MVN}(\mu_{-p,d}, \Sigma_{-p,d})$ for mean vector and covariance matrix $\mu_{-p,d}$ and $\Sigma_{-p,d}$, respectively.

Framework

• Conditional expectation combines information from both $\phi_{-p,d}$ and $\psi_{-p,d}$: $m_{p,q;d}(\omega) = \hat{E}[I_{q,d}(b,\omega)|I_{p,d}(b,\omega) = u_{p,d}] = \hat{\phi}_{-p,q;d}u_{p,d} + u_{p,d}^{\psi-p,q;d}\hat{\mu}_{-p,q;dj}, p \neq q, [3]$ Bootstrap: We used a non-parametric bootstrap to estimate parameter uncertainty of the DEC model. For each clusters, we resampled the blocks then re-fitted the DEC model to each resamples to obtain bootstrap estimates for $\phi_{p,q;d}$ and conditional mean difference (i.e., $m_{diff} = m_{p,q;1} - m_{p,q;2}$) for all pairwise combination of channels.

Subject Level Results and Future Work

[1] Heffernan, J.E. and Tawn, J.A.: A conditional approach for multivariate extreme values (with discussion), Journal of the Royal Statistical Society: Series B (Statistical Methodology) 66, no.3 (2004): 497-546. [2] Narula, G., Haeberlin, M., Balsiger, J., Strässle, C., Imbach, L.L., and Keller, E.: Detection of EEG burst-suppression in neurocritical care patients using an unsupervised machine learning algorithm Clinical

Multi-subject DEC; utilize Extreme Vector Autoregressive Model with subjectspecific effects: $\left| I_{-i}^{(s)}(b,\omega) \right| \left| I_{i}^{(s)}(b,\omega) = u_{i}^{(s)} \right| = F^{(s)}(b,\omega) + D^{(s)}(b,\omega);$ for all

 $\blacktriangleright F^{(s)}(b,\omega)$ is the subject-specific fixed-effects, while $D^{(s)}(b,\omega)$ has the subject-specific tail connectivity matrices of four clusters. We will use **D** to represent the **DEC model**. The simplest case of $D^{(s)}(b+h,\omega) = D^{(s)}_{\omega}(b+h)$ is for lag 1 fixing $\Psi = 0$ which is

$$\boldsymbol{D}_{\omega}^{(s)}(b) = [\Phi_{1,1}^{(s)} E_{1,b}^{(s)} + \Phi_{2,1}^{(s)} E_{2,b}^{(s)}] \boldsymbol{D}_{\omega}^{(s)}(b-1) + \boldsymbol{e}^{(s)}(b)$$

where $E_{ch}^{(s)} = E_c^{(s)}(b,\omega)$ is 1 when the block is in extreme set of cluster c and 0 otherwise. The term $e^{(s)}(b)$ is a zero-mean white noise multivariate process.