
Advancements in Neural Bayes Estimation for Spatial Processes
Jordan Richards1, Matthew Sainsbury-Dale1;2, Andrew Zammit-Mangion2, and Raphaël Huser1
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Introduction

Inference for spatial models can be computationally troublesome due to
their reliance on intractable and/or censored likelihoods. Neural Bayes
estimators (NBEs) are likelihood-free and orders-of-magnitude faster
than classical likelihood-based methods. Two recent projects:
• adapt NBEs for censored input data (Richards et al., 2023),
• apply NBEs in a peaks-over-threshold framework,
• adapt NBEs to irregular spatial data (Sainsbury-Dale et al., 2023a),
• apply NBEs for credible interval estimation.

Methodology

Neural Bayes estimators are estimators that target the Bayes risk
(Sainsbury-Dale et al., 2023b), constructed as neural networks that map
model realisations Z to the true parameter set θ.
Censoring: helpful to reduce bias in extremal dependence estimates.
Components of Z are left-censored with fixed censoring level close to one.
Irregular spatial data: previous NBEs limited to data observed on a reg-
ular grid. Constraint alleviated through use of graph neural networks.
Models: we consider four popular spatial extremal dependence models:
• (Inverted) Max-stable processes (I)MSPs, Gaussian processes (GPs),
• Huser and Wadsworth (2019) (HW) random scale mixture,

Z(·) = RδW (·)1−δ, for δ ∈ [0, 1],

with a unit-Pareto r.v. R ≥ 1 and GP W (·) with unit-Pareto margins.
The parameter δ determines the extremal dependence class, with
asymptotic independence if and only if δ ≤ 0.5.
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Simulation studies

Gains compared to censored pairwise likelihood (cPL): inference for
200 replicates of GP / MSP / IMSP with range λ ∈ [2, 10] and smoothness
κ ∈ [0.5, 2] for correlation/power-variogram. Data are on a 16 × 16 grid.
Speed-up of the order of 67,500–750,000.
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Fig. 1. Empirical joint dist. Brown: NBE. Green: true parameter set.
Black: cPL (all pairs). Blue: cPL (pairs within 3 units).

Irregular spatial configurations: Matérn GP with range ρ ∈ [0.05, 0.3],
unit smoothness, and nugget τ ∈ [0.1, 1]. Data are observed at 250 lo-
cations, whose configuration is randomly generated during training.
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Fig. 2. Top; spatial configurations used for testing. Bottom; marginal
sampling dists. for GNN-NBE and maximum likelihood estimator.

Applications

Fig. 3. Estimates of (left) λ and (right) δ for anisotropic HW process.
Data are monthly mean PM2.5 on 242× 189 grid; model fitted locally on all
16× 16 grids. There are 26387 estimates, each taking ∼ 1× 10−3s.

Fig. 4. Estimates of (ρ, τ ) and credible interval widths for Matérn GP.
Data are 2161 hexagonal cell clusters with SST observed at 2769 to
12591 locations. All estimates require a single estimator and take
only three minutes to compute on a single GPU.


