

Extreme Causal Analysis for Both Tails in Time Series Data The Efficient Tail Hypothesis

Junshu Jiang¹, Jordan Richards², Raphaël Huser¹, David Bolin¹

JSM2024

August 5, 2024

Statistice Program, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia. ²School of Mathematics, University of Edinburgh, Edinburgh, UK

junshu.jiang@kaust.edu.sa (JSM2024)

Efficient Tail Hypothesis

August 5, 2024

- The Efficient Market Hypothesis states that the expected value of an asset return, given measurable information from the past, is zero;
- Efficiency drops under extreme conditions (Choi, 2021);
- We study asymmetry in bivariate tail dependence via a new dependence measure: directional-tail-dependence λ;
- To construct the *Efficient Tail Hypothesis*.

Motivation

- X returns of some asset at time t 1: Y target asset at time t.
- A = B: Tail symmetric; A = D: directional tail asymmetric.

Definition (Multivariate regular variation (§6, Resnick (2007)))

A *p*-dimensional random vector $\mathbf{X} \in \mathbb{R}_+$ is regularly varying (RV) with tail index $\alpha > 0$, denoted by $\mathbf{X} \in \mathrm{RV}_+^p(\alpha)$, if there exists a sequence $b_n \to \infty$ such that $n\mathbb{P}(b_n^{-1}\mathbf{X} \in \cdot) \xrightarrow{v} \nu_{\mathbf{X}}(\cdot)$ as $n \to \infty$.

- Radius $R := \|\boldsymbol{X}\|_2$ and angles \boldsymbol{X}/R independent (in limit);
- Radial-angular decomposition of limit measure $v_{\mathbf{X}}(\cdot)$:

$$\nu_{\boldsymbol{X}}(\{\boldsymbol{x}\in\mathbb{E}_{+}^{p}:||\boldsymbol{x}||_{2}\geq r,\boldsymbol{x}/||\boldsymbol{x}||_{2}\in\mathcal{B}\})=r^{-\alpha}H_{\boldsymbol{X}}(\mathcal{B}),$$

for cone $\mathbb{E}^p_+ = [0,\infty]^p \setminus \{\mathbf{0}\}$ and $\mathcal{B} \subset \mathbb{S}^+_{p-1}$;

- Angular mass measure $H_{\mathbf{X}}(\cdot)$ is defined on the positive part of unit sphere $\mathbb{S}_{p-1}^+ = \{ \mathbf{x} \in \mathbb{R}_+^p : ||\mathbf{x}||_2 = 1 \};$
- $H_X(\cdot)$ is ID card for upper tails of X (but difficult to estimate).

• Extremal dependence measure (EDM) for $(X, Y)^{\top} \in \mathrm{RV}^2_+(2)$:

$$\sigma(X,Y) := \int_{\mathbb{S}^1_+} \omega_x \omega_y \mathrm{d}N_{(X,Y)}(\boldsymbol{\omega}) = \lim_{r \to \infty} \mathbb{E}\left[\frac{XY}{R^2} \mid R > r\right], \quad (1)$$

where $R = ||(X, Y)||_2$ and $N_{\mathbf{X}}(\cdot) := \frac{H_{\mathbf{X}}(\cdot)}{H_{\mathbf{X}}(\mathbb{S}^+_{p-1})}$ is a probability measure;

• $\sigma(X, Y) = 0 \Rightarrow$ tail independence;

• For $\alpha = 2$, $\sigma(X, Y) = 0.5 \Rightarrow$ perfect tail dependence.

★ 3 ★ 3

- Regular variation is a popular modelling framework for multivariate extremes, but it is only defined on the positive orthant;
- \Rightarrow Only facilitates learning of joint extremal behaviour;
- Defining regular variation on the entire reals is possible:

Regular variation on \mathbb{R}^{p}

Definition (Regular variation on \mathbb{R}^{ρ})

A *p*-dimensional random vector $\mathbf{X} \in \mathbb{R}^{p}$ is regularly varying with tail index $\alpha > 0$, denoted by $\mathbf{X} \in \mathrm{RV}^{p}(\alpha)$, if $|\mathbf{X}| \in \mathrm{RV}^{p}_{+}(\alpha)$ with the normalizing sequence $b_{n} \to \infty$ and for all $\mathbf{z} \in [0, \infty)^{p} \setminus \{\mathbf{0}\}$ and $\mathbf{s} \in \{-1, 1\}^{p}$,

$$\lim_{n\to\infty}\frac{\mathbb{P}\{b_n^{-1}\boldsymbol{s}\odot\boldsymbol{X}\in[\boldsymbol{0},\boldsymbol{z}]^c\}}{\mathbb{P}\{b_n^{-1}|\boldsymbol{X}|\in[\boldsymbol{0},\boldsymbol{z}]^c\}}\in(0,1),$$

where \odot is the element-wise (Hadamard) product and $|\cdot|$ denotes the element-wise absolute value.

- Has limit and angular measures, $\nu_{\mathbf{X}}(\cdot)$ and $H_{\mathbf{X}}(\cdot)$.
- $H_{\boldsymbol{X}}(\cdot)$ defined on $\mathbb{S}_{p-1} = \{ \boldsymbol{x} \in \mathbb{R}^p : ||\boldsymbol{x}||_2 = 1 \}.$

Balanced regular variation on \mathbb{R}^{p}

- Working with RV^p(α) variables can be troublesome as there are no constraints on how the mass of H_X(·) is distributed across S_{p-1}.
- One trick is to use balanced regularly varying random variables $BRV^{p}(\alpha)$ with the following marginal constraint:

Definition (Balanced regular variation)

A *p*-dimensional regularly varying random vector \boldsymbol{X} is balanced, denoted by $\boldsymbol{X} \in BRV^p(\alpha)$, if $\boldsymbol{X} \in RV^p(\alpha)$ and $v_{\boldsymbol{X}}(\{\boldsymbol{x} \in \mathbb{E}^p : x_i > 1\}) = v_{\boldsymbol{X}}(\{\boldsymbol{x} \in \mathbb{E}^p : x_i < -1\}) = 1$ for all i = 1..., p.

• WLOG as known transformation.

<ロ> <部> <部> <き> <き>

æ

- We now constrain our focus to bivariate vector $(X, Y)^{\top} \in BRV^2(2)$.
 - X: explanatory variable, typically lagged (t-1) asset price;
 - Y: target variable, asset price at time t;
- A useful trick (in financial extremes) is truncation at zero. Let $Y^+ := \max\{Y, 0\}$ and $Y^- := -\min\{Y, 0\}$.
- Studying directional asymmetry in (X, Y)[⊤] is equivalent to quantifying differences between the strength of **positive tail** dependence in (X, Y⁺)[⊤] and (X, Y[−])[⊤].

5 K K 5 K 5

Extremal ball for visualizing directional tail dependence

- To visualise asymmetry, evaluate $\sigma(X, Y^+)$ and $\sigma(X, Y^-)$.
- Project EDM to the *extremal ball* (positive part of \mathbb{S}_2^+).

< □ > < @ > <

- ∢ ⊒ →

Extremal ball for visualizing directional tail dependence

Definition (Extremal ball)

For $(X, Y)^{\top} \in BRV^2(2)$ with Y^+, Y^- as before, define coordinates $(\theta_{X,Y^+}, \theta_{X,Y^-})$, where

$$heta_{X,Y^+} = \cos^{-1}rac{\sigma(X,Y^+)}{\sqrt{\sigma(X,X)\sigma(Y^+,Y^+)}},$$

denotes the angle between X and Y^+ .

Can similarly get $\theta_{X,Y^{-}}$.

イロト 不得 トイヨト イヨト 二日

(2)

KAUST

Methodology

Relative position of X^+ to Y on extremal ball

- Points on the tail efficient line imply symmetric dependence;
- Deviation from the central line implies asymmetric dependence.

Dataset

- Percentage price change (interval is 30 seconds) of futures of commodities in China,
- Contains 55 different assets across different sectors
- From 2022-08-01 to 2023-07-31 and contains 110985 observation,
- Transformed data: $\boldsymbol{Z}_t = (Z_{1,t}, \dots, Z_{55,t})^{\top}$ for $t = 1, \dots, T$.

Market-wide directional tail symmetry analysis

Extremal ball:

- visualize $(Z_{i,t}, Z_{j,t+1})^{\top}$ and $(-Z_{i,t}, Z_{j,t+1})^{\top}$, i, j = 1, ..., 55.
- in total 6050 points
- The former: the driven event is an extremal appreciation,
- The latter: the driven event is an extremal depreciation,
- most points concentrate on the tail efficient line.

Market-wide directional tail symmetry analysis

- Points on the tail efficient line imply symmetric dependence;
- Deviation from the central line implies asymmetric dependence.

< ロ > < 同 > < 回 > < 回 >

Directional tail dependence λ

Definition (Directional tail dependence measure)

For $(X, Y)^{\top} \in BRV^2(2)$, the directional tail dependence measure, $\lambda(X, Y)$, is defined by

$$\lambda(X,Y) = \int_{\{(\omega_x,\omega_y)^\top \in \mathbb{S}^1 : \omega_x \ge 0\}} \omega_x \omega_y \mathrm{d} H_{(X,Y)}(\boldsymbol{\omega}). \tag{3}$$

Properties of λ

- $\lambda(X, Y) \in [-1, 1]$, boundary case ± 1 are achieved when $\lim_{a \to \infty} \mathbb{P}[X > a \mid Y < -a] = 1$ or $\lim_{a \to \infty} \mathbb{P}[X > a \mid Y > a] = 1$;
- $\lambda(X, Y) = 0$ implies directional symmetry (tail efficient);
- Estimation of λ is not straightforward as we don't know the angular mass on the right half circle, H_(X,Y)({(ω_x, ω_y)^T ∈ S¹ : ω_x ≥ 0}).

junshu.jiang@kaust.edu.sa (JSM2024)

19/29

э

Proposition (Two equivalent form of $\lambda(X, Y)$ **)**

$$\lambda(X,Y) = 3 \int_{\{(\omega_x,\omega_y)^\top \in \mathbb{S}^1 : \omega_x \ge 0\}} \omega_x \omega_y \mathrm{d}N_{(X^+,Y)}(\omega) := \lambda^1(X,Y)$$

= 2{ $\sigma(X^+,Y^+) - \sigma(X^+,Y^-)$ } := $\lambda^2(X,Y).$ (4)

Estimation for λ

Definition (Two estimators for λ)

Let
$$\{(x_i, y_i)^{\top}\}_{i=1}^n$$
 draw i.i.d. from $(X, Y)^{\top}$.
1) $\hat{\lambda}_n^1 = 3\frac{1}{k} \sum_{i=1}^n \frac{x_i^+ y_i}{r_i^2} \mathbb{1}(r_i \ge r_0)$
2) $\hat{\lambda}_n^2 = 2\left(\frac{1}{k^+} \sum_{i=1}^n \frac{x_i^+ y_i^+}{(r_i^+)^2} \mathbb{1}(r_i^+ \ge r_0^+) - \frac{1}{k^-} \sum_{i=1}^n \frac{x_i^+ y_i^-}{(r_i^-)^2} \mathbb{1}(r_i^- \ge r_0^-)\right)$
where r_i, r_i^+, r_i^- is radius; e.g., $r_i = ||(x^+, y)^{\top}||_2$,
 k, k^+, k^- are number of exceedences; e.g., $k^+ = \sum_{i=1}^n \mathbb{1}(r_i^+ > r_0^+)$
and r_0, r_0^+ and r_0^- are suitably-chosen high thresholds.

• We prove asymptotic normality for λ_n^1 and also construct a **non-parametric permutation test (for both)**.

(人間) くう くう くう

э

Permutation test for ETH

- Under the null hypothesis, with $\lambda(X, Y) = \lambda(X, -Y) = 0$, we can reflect realisations of Y in the x-axis (with probability equal to 0.5) to produce new samples
- Works for both estimators $\widehat{\lambda}_n^1$ and $\widehat{\lambda}_n^2$.
- In simulation study (not discussed), we find that permutation test for $\hat{\lambda}_n^2$ gives the strongest power.

Efficient Tail Hypothesis (ETH)

Definition (pairwise Efficient Tail Hypothesis)

For $(\mathbf{X}^{\top}, \mathbf{Y}^{\top})^{\top} \in \text{BRV}^{p_1+p_2}(2)$, the Efficient Tail Hypothesis states that all pairs $(X_i, Y_j)^{\top}$, $i = 1, ..., p_1$, $j = 1, ..., p_2$, are tail-efficient, that is, $\lambda(X_i, Y_j) = 0$

- $\mathbf{Y} \in \mathbb{R}^{p_2}$ can be asset returns at time t
- $\pmb{X} \in \mathbb{R}^{p_1}$ can be information that is measurable before time t

Test the ETH:

- Is the deviation significant?
- We let $\boldsymbol{X} = (Z_{1,t}, \dots, Z_{55,t}, -Z_{1,t}, \dots, -Z_{55,t})^{\top}$ be the explanatory vector and $\boldsymbol{Y} = (Z_{1,t+1}, \dots, Z_{55,t+1})^{\top}$ be the target vector.
- using permutation test with 6050 individual tests,
- use multiple test correction (Benjamini and Hochberg, 1995),
- significance level $\alpha = 0.01$, the quantile for thresholds r_0^+, r_0^- are derived using the empirical 0.99-quantile.
- Null rejected with 126 significant pairs.

Market-wide directional tail symmetry analysis

126 tail inefficient pairs are found. May present **profitable investment** opportunities.

< ロ > < 同 > < 回 > < 回 >

Market-wide directional tail symmetry analysis

Table: Asset pairs (and their acronyms) with the top 10 largest $|\hat{\lambda}_n^2(X_i, Y_j)|$.

Explanatory asset X_i	Target asset Y_j	Sign of X_i	$\widehat{\lambda}_n^2(X_i, Y_j)$
red dates (CJ)	red dates (CJ)	negative	0.073
coking coal (jm)	coke (j)	negative	-0.065
iron ore (i)	coking coal (jm)	negative	-0.063
soybean oil (y)	vegetable oil (OI)	positive	0.057
low sulfur fuel (lu)	cotton yarn (CY)	positive	0.056
coke (j)	coking coal (jm)	negative	-0.055
coking coal (jm)	iron ore (i)	negative	-0.055
styrene (eb)	methanol (MA)	negative	-0.055
polypropylene (pp)	methanol (MA)	negative	-0.054
iron ore (i)	soda ash (SA)	negative	-0.053

<

Artificial dynamic portfolio based on the significant tail-inefficient pair

- we construct an artificial dynamic portfolio based on the trading strategy on each of those 126 significant tail-inefficient pairs,
- for an inefficient pairs (X_i, Y_j) :
 - buy/sell asset of Y_j when observing an extreme value for asset X_i ;
 - For X_i , 99.5% historical quantile for positive extremes and falls below 0.5% the quantile for negative extremes;
 - buy if $\lambda(X_i, Y_j) > 0$, otherwise sell;
 - then close the position after one period;
 - trading cost is ignored;
 - we backtest this strategy on the out-of-sample data from 2023-06-01 to 2023-07-31.

junshu.jiang@kaust.edu.sa (JSM2024)

August 5, 2024

イロト イボト イヨト イヨト

æ

Summary

- We proposed a new measure, the directional tail dependence $\lambda(X, Y)$, to quantify the extent of directional tail symmetry;
- Empirically, the ETH is rejected for China's futures market;
- We use the 126 signifcant pairs to construct a profitable investment strategy;
- We construct high-frequency data for open source:
 - since 2022;
 - contains options and futures data.

References

- Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 57(1):289–300.
- Choi, S.-Y. (2021). Analysis of stock market efficiency during crisis periods in the US stock market: Differences between the global financial crisis and COVID-19 pandemic. *Physica A: Statistical Mechanics and Its Applications*, 574:125988.
- Resnick, S. I. (2007). *Heavy-Tail Phenomena: Probabilistic and Statistical Modeling.* Springer Science & Business Media.

< ロ > < 同 > < 回 > < 回 > < 回 > <