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Motivation

Motivation

Wildfires cause significant death and damage across the world
Recent years have seen devastating wildfires in the (west) U.S. - 100s
of deaths and millions of acres of destroyed land
Frequency + severity to be exasperated by climate change
In 2021, global wildfires contributed to ≈ 1760 megatonnes of
carbon emissions - High proportion from the U.S.
To mitigate risk, need to identity drivers and high-risk areas - Can
we do these both simultaneously?
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Extreme quantile regression

Extreme quantile regression

We perform quantile regression with the response taken to be aggregated
burnt area (BA) for a spatio-temporal grid-box.

Interested in upper-tails, i.e., most dangerous wildfires
Typical quantiles of interest will be larger than those previously
observed ⇒ non-parametric quantile regression perform poorly
Instead turn to parametric regression using asymptotically-justified
extreme value distributions
Three classics: GEV, GPD and PP models - We focus on PP
extension as its parameters are easier to interpret, but the
framework is applicable for any of the three

Jordan Richards (KAUST) jordan.richards@kaust.edu.sa August 8, 2022 3 / 17

jordan.richards@kaust.edu.sa


Extreme quantile regression

Extreme quantile regression

We perform quantile regression with the response taken to be aggregated
burnt area (BA) for a spatio-temporal grid-box.

Interested in upper-tails, i.e., most dangerous wildfires
Typical quantiles of interest will be larger than those previously
observed ⇒ non-parametric quantile regression perform poorly
Instead turn to parametric regression using asymptotically-justified
extreme value distributions
Three classics: GEV, GPD and PP models - We focus on PP
extension as its parameters are easier to interpret, but the
framework is applicable for any of the three

Jordan Richards (KAUST) jordan.richards@kaust.edu.sa August 8, 2022 3 / 17

jordan.richards@kaust.edu.sa


Extreme quantile regression

Extreme quantile regression

We perform quantile regression with the response taken to be aggregated
burnt area (BA) for a spatio-temporal grid-box.

Interested in upper-tails, i.e., most dangerous wildfires
Typical quantiles of interest will be larger than those previously
observed ⇒ non-parametric quantile regression perform poorly
Instead turn to parametric regression using asymptotically-justified
extreme value distributions
Three classics: GEV, GPD and PP models - We focus on PP
extension as its parameters are easier to interpret, but the
framework is applicable for any of the three

Jordan Richards (KAUST) jordan.richards@kaust.edu.sa August 8, 2022 3 / 17

jordan.richards@kaust.edu.sa


Extreme quantile regression

Extreme quantile regression

We perform quantile regression with the response taken to be aggregated
burnt area (BA) for a spatio-temporal grid-box.

Interested in upper-tails, i.e., most dangerous wildfires
Typical quantiles of interest will be larger than those previously
observed ⇒ non-parametric quantile regression perform poorly
Instead turn to parametric regression using asymptotically-justified
extreme value distributions
Three classics: GEV, GPD and PP models - We focus on PP
extension as its parameters are easier to interpret, but the
framework is applicable for any of the three

Jordan Richards (KAUST) jordan.richards@kaust.edu.sa August 8, 2022 3 / 17

jordan.richards@kaust.edu.sa


Extreme quantile regression

Existing approaches

Existing approaches for parametric extreme quantile regression
represent θ as lin. or add. functions of predictors x ∈ Rd , i.e., θ(x)

Linear models are unable to capture non-linear structure so perform
poorly for complex problems, e.g., wildfire occurrence and spread
Spline-based regression models can capture non-linear relationships,
but scale poorly to high dimensions - We consider d = 30 predictors

We instead use deep learning methods as these can (i) capture complex
structure in x, (ii) scale well to high dimensions and (iii) facilitate high
predictive accuracy.
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Deep learning for extremes

Partially interpretable neural networks

Statisticians generally avoid the use of neural networks.
Neural networks (NNs) are “black box" in the sense that it’s
difficult/impossible to interpret their output - no good for
understanding the drivers of risk
We extend the approach of [Zhong and Wang, 2021] (who propose
“partially-linear" NNs) and create NNs that are
“partially-interpretable" (PINN)
The effect of some predictors can be interpreted whilst the rest feed
a neural network to improve predictive accuracy
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Deep learning for extremes

Proposed model

Let the response follow F(θ(x)) with parameter set
θ(x) = (θ1(x), θ2(x), . . . ). Then for all i = 1, 2, . . . ,

Split predictor set x into two complementary subsets x(i)
I and x(i)

N -
“interpreted" and “non-interpreted"
Let

θi(x) = hi [η(i)
0 + m(i)

I (x(i)
I ) + m(i)

N (x(i)
N )],

for constant intercept η(i)
0 ∈ R and link hi : R→ R

Interpretable: m(i)
I , e.g., linear, spline. Neural network: m(i)

N .
Our framework applies for any generic parametric distribution F ,
e.g., Bernoulli for occurrence, as well as for non-parametric quantile
regression.
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Deep learning for extremes

Estimating mN

We estimate mN using a neural network (NN):
Training of neural networks is implemented in the R interface to
Keras (R package pinnEV forthcoming)
Loss is (penalised) negative log-likelihood for F
Different types of NN can be used depending on structure in x. We
compare densely-connected (vanilla), CNN, as well as RNN
Models with simple NNs outperform fully-linear/additive models

We estimate extreme quantiles using a novel point process model:
Has three parameters: location qα, spread sβ > 0 and shape ξ ≥ 0
All describe the properties of the corresponding block-maxima dist.
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Application

Application: Data
Monthly burnt area (BA) for the contiguous U.S.
Fire Program Analysis fire-occurrence database
1993-2015, March - September. 161 total fields
0.5◦ × 0.5◦ spatial resolution. 3503 locations, 216713 non-zero values
Maps of log(1 +

√
BA). Left: July 2007. Right: July 2012. California

wildfires.
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Application

Predictors
10 meteorological variables from ERA-5 reanalysis on land surface,
e.g., temperature, wind-speed components, precipitation
Land cover maps (COPERNICUS) with proportion of grid-cell
consisting of one of 18 types, e.g., water, urban areas, grassland
Mean and s.d. altitude
Left: temp. Right: grassland proportion. July 2007.
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Application

Model

We model the occurrence (not presented) and spread of wildfire,
separately.

For the spread, we model the square-root of strictly positive BA,
i.e.,
√
BA|(BA > 0)

Shape fixed over space and time - ξ̂ = 0.359 (0.342, 0.372)
Location qα and spread sβ modelled using PINN framework
Seven interpreted predictors - Some linear, some additive -
Different for either parameter - Other 23 predictors feed a CNN
Model uncertainty addressed through stationary bootstrap - Results
presented as average over 250 samples
Over-fitting avoided using validation techniques

Jordan Richards (KAUST) jordan.richards@kaust.edu.sa August 8, 2022 10 / 17

jordan.richards@kaust.edu.sa


Application

Model

We model the occurrence (not presented) and spread of wildfire,
separately.

For the spread, we model the square-root of strictly positive BA,
i.e.,
√
BA|(BA > 0)

Shape fixed over space and time - ξ̂ = 0.359 (0.342, 0.372)
Location qα and spread sβ modelled using PINN framework
Seven interpreted predictors - Some linear, some additive -
Different for either parameter - Other 23 predictors feed a CNN
Model uncertainty addressed through stationary bootstrap - Results
presented as average over 250 samples
Over-fitting avoided using validation techniques

Jordan Richards (KAUST) jordan.richards@kaust.edu.sa August 8, 2022 10 / 17

jordan.richards@kaust.edu.sa


Application

Model

We model the occurrence (not presented) and spread of wildfire,
separately.

For the spread, we model the square-root of strictly positive BA,
i.e.,
√
BA|(BA > 0)

Shape fixed over space and time - ξ̂ = 0.359 (0.342, 0.372)
Location qα and spread sβ modelled using PINN framework
Seven interpreted predictors - Some linear, some additive -
Different for either parameter - Other 23 predictors feed a CNN
Model uncertainty addressed through stationary bootstrap - Results
presented as average over 250 samples
Over-fitting avoided using validation techniques

Jordan Richards (KAUST) jordan.richards@kaust.edu.sa August 8, 2022 10 / 17

jordan.richards@kaust.edu.sa


Application

Model

We model the occurrence (not presented) and spread of wildfire,
separately.

For the spread, we model the square-root of strictly positive BA,
i.e.,
√
BA|(BA > 0)

Shape fixed over space and time - ξ̂ = 0.359 (0.342, 0.372)
Location qα and spread sβ modelled using PINN framework
Seven interpreted predictors - Some linear, some additive -
Different for either parameter - Other 23 predictors feed a CNN
Model uncertainty addressed through stationary bootstrap - Results
presented as average over 250 samples
Over-fitting avoided using validation techniques

Jordan Richards (KAUST) jordan.richards@kaust.edu.sa August 8, 2022 10 / 17

jordan.richards@kaust.edu.sa


Application

Model

We model the occurrence (not presented) and spread of wildfire,
separately.

For the spread, we model the square-root of strictly positive BA,
i.e.,
√
BA|(BA > 0)

Shape fixed over space and time - ξ̂ = 0.359 (0.342, 0.372)
Location qα and spread sβ modelled using PINN framework
Seven interpreted predictors - Some linear, some additive -
Different for either parameter - Other 23 predictors feed a CNN
Model uncertainty addressed through stationary bootstrap - Results
presented as average over 250 samples
Over-fitting avoided using validation techniques

Jordan Richards (KAUST) jordan.richards@kaust.edu.sa August 8, 2022 10 / 17

jordan.richards@kaust.edu.sa


Application

Model

We model the occurrence (not presented) and spread of wildfire,
separately.

For the spread, we model the square-root of strictly positive BA,
i.e.,
√
BA|(BA > 0)

Shape fixed over space and time - ξ̂ = 0.359 (0.342, 0.372)
Location qα and spread sβ modelled using PINN framework
Seven interpreted predictors - Some linear, some additive -
Different for either parameter - Other 23 predictors feed a CNN
Model uncertainty addressed through stationary bootstrap - Results
presented as average over 250 samples
Over-fitting avoided using validation techniques

Jordan Richards (KAUST) jordan.richards@kaust.edu.sa August 8, 2022 10 / 17

jordan.richards@kaust.edu.sa


Application

Drivers of extreme wildfire spread

Consider effect on location qα, the median of the annual maxima dist.
for
√
BA|(BA > 0), i.e., extreme wildfire magnitude
Linear regression coefficients (given a one s.d. increase):

temperature: 0.97 (0.93, 1.37),
evaporation: 0.93 (0.91, 1.06),
precipitation: −0.01 (−0.03, 0.08),
proportion of urban coverage: −0.01(−0.05, 0.05)

Effect of wind-speed modelled using splines and found to be
negligible at this temporal scale
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Application

Spline results

Here sβ is the IQR of the annual maxima dist. of
√
BA|(BA > 0). Red

triangles are knots, blue dashed lines are 95% confidence envelopes
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Application

Extreme quantile maps: compound risk
Top: obs. Bottom: estimated q-quantile for log(1 +

√
BA). Left: July

2007. Right: July 2012.
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Application

Extreme quantile maps: compound risk
Top: obs. Bottom: estimated 0.95-quantile for log(1 +

√
BA). Left: July

2007. Right: July 2012.
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Conclusion

Concluding remarks

We propose a (very) flexible framework for fitting extreme value
models using deep learning
Combines the high-predictive accuracy of neural networks with the
interpretability of linear and additive models
Model fits very well to wildfire data, significantly outperforms
(classical) linear or additive regression models and reveals new
insights into the drivers of extreme wildfires
Parallel project for Med. with Emanuele Bevacqua and Jakob
Zscheischler (UFZ)
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Conclusion

Selected references
Richards, J. (2022).

pinnEV: Partially-Interpretable Neural Networks for modelling of Extreme Values.
R package. Will be made available at github.com/Jbrich95/pinnEV.

Richards, J. and Huser, R. (2022).
A unifying partially-interpretable framework for neural network-based extreme quantile
regression.
Pre-print. Not available online.

Zhong, Q. and Wang, J.-L. (2021).
Neural networks for partially linear quantile regression.
arXiv preprint arXiv:2106.06225.

Both will be available alongside slides at my
website jbrich95.github.io (via QR code).
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Conclusion

Thanks for your attention!
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