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Very broad overview
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Geometric multivariate EVT: Motivation

−6 −2 0 2 4 6

−
6

−
2

0
2

4
6

−6 −2 0 2 4 6

−
6

−
2

0
2

4
6

−6 −2 0 2 4 6

−
6

−
2

0
2

4
6

−6 −2 0 2 4 6

−
6

−
2

0
2

4
6

X1X1X1X1

X
2

X
2

X
2

X
2 Qq

Directions along which MEVT frameworks allow extrapolation to tail regions: (a) MRV, (b) and (c)
conditional extremes, (d) geometric extremes.
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Directions along which MEVT frameworks allow extrapolation to tail regions: (a) MRV, (b) and (c)
conditional extremes, (d) geometric extremes.

Aim to extend probability estimation via a semi-parametric, geometric approach to
multivariate extremes to higher-dimensional settings.

Leverage theoretical links between the geometry of (starshaped set) parameters to
define a range of parsimonious to flexible models.

Use the generative framework of normalising flows to enable fast sampling and
probability estimation.
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Presentation Overview

1 Geometric extreme value theory

2 Statistical inference

3 Simulation study

4 An application to low and high wind speeds
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Very broad overview – A directional statistics approach

Let X1,X2, . . . ∈ Rd be iid draws from PX with standard Laplace marginal distributions, and

R := ∥X∥2 > 0, W := X/R ∈ Sd−1.
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Limit sets

Let X1,X2, . . . ∈ Rd be iid draws from PX with standard Laplace marginal distributions, and

n = 100

X1

X2

X3

Nn :=
{

X1
log(n) , . . . ,

Xn
log(n)

}
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Limit sets

Let X1,X2, . . . ∈ Rd be iid draws from PX with standard Laplace marginal distributions, and

n = 10000

X1

X2

X3

Nn :=
{

X1
log(n) , . . . ,

Xn
log(n)

}
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Limit sets

Let X1,X2, . . . ∈ Rd be iid draws from PX with standard Laplace marginal distributions, and

n = 100000

X1

X2

X3

Nn :=
{

X1
log(n) , . . . ,

Xn
log(n)

}
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Limit sets

Let X1,X2, . . . ∈ Rd be iid draws from PX with standard Laplace marginal distributions, and

n = 1000000

X1

X2

X3

Nn :=
{

X1
log(n) , . . . ,

Xn
log(n)

}
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Limit sets

Let X1,X2, . . . ∈ Rd be iid draws from PX with standard Laplace marginal distributions, and

n = 100

X1

X2

X3

Nn :=
{

X1
log(n) , . . . ,

Xn
log(n)

}
P→ G ⊆ [−1, 1]d

Nolde & Wadsworth (2022)
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Limit sets

Let X1,X2, . . . ∈ Rd be iid draws from PX with standard Laplace marginal distributions, and

n = 10000

X1

X2

X3

Nn :=
{

X1
log(n) , . . . ,
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log(n)

}
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Limit sets
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Limit sets

Let X1,X2, . . . ∈ Rd be iid draws from PX with standard Laplace marginal distributions, and

n = 1000000

X1

X2

X3

Nn :=
{

X1
log(n) , . . . ,
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log(n)
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Limit sets

Let X1,X2, . . . ∈ Rd be iid draws from PX with standard Laplace marginal distributions, and

n = 10000

X1

X2

X3

Nn :=
{

X1
log(n) , . . . ,
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log(n)
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Limit sets

Let X1,X2, . . . ∈ Rd be iid draws from PX with standard Laplace marginal distributions, and

n = 100000

X1

X2

X3

Nn :=
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X1
log(n) , . . . ,
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log(n)

}
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Limit sets

Let X1,X2, . . . ∈ Rd be iid draws from PX with standard Laplace marginal distributions, and

n = 1000000

X1

X2

X3

Nn :=
{

X1
log(n) , . . . ,

Xn
log(n)

}
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Starshaped sets ⋆ – A basis for our model construction

A set B ∈ Rd is starshaped if there exists a set ker(B) ⊆ B such that for x ∈ ker(B) and for
all y ∈ B, the segment [x : y] ∈ B.

A set B ∈ ⋆ is in one-to-one correspondence with a radial function

rB(w) = sup{λ ∈ R : λw ∈ B}, w ∈ Sd−1.

Starshaped sets admit algebraic operations via their radial functions:

1

1

1

1

1

1

1Hansen et al. (2020)
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Operations on starshaped sets1

Example

Let B1 and B2 be starshaped sets, then
i) B = B1 + B2 has radial function rB = rB1 + rB2 .

ii) B = B1 · B2 has radial function rB = rB1 rB2 .
iii) B = Bd

1 has radial function rB = rd
B1
.

1

1

1

1

1

1

1Hansen et al. (2020)
J Richards (UoE) CASE 2025 2nd July 2025 7 / 26



Limit sets

A sufficient condition on fX for Nn to converge onto G is that

−
log fX(txt)

t
→ gG(x), xt → x, as t→∞, x ∈ Rd, (1)

for a continuous gauge function gG : Rd → R≥0. Then, G ∈ ⋆ and it has radial function
rG : Sd−1 → R≥0 given by rG = 1/gG .

Our limit set G can be defined by

G = {x ∈ R : rG(x) ≥ 1}.

Nolde & Wadsworth (2022)
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The quantile set Qq

We letQq via the q-th quantile of R |W = w, that is, it satisfies

P[R ≤ rQq (w) | W = w] = q, for all w ∈ Sd−1.

Qq then satisfies that

P[X /∈ Qq] = 1− q, and W | {X /∈ Qq}
d
= W.

Qq

Q′
q

0

0.1

0.2

0

0.1

0.2

0.3

Left: Independent samples (n = 2 × 104) from a bivariate distribution having true quantile set Q0.95,
boundary ∂Q0.95 (solid black line) and complement Q′

0.95. Centre: Empirical proportion of
exceedances binned by angular regions with true exceedance probability (0.05) in red. Right: Circular
histogram of the density of all sampled angles (light grey) and of exceedance angles (dark grey) with
concentric circles denoting density level sets.
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Exceedances of Qq

Note that the event {X = RW /∈ Qq} corresponds to {R > rQq (W)}.

Papastathopoulos et al. (2023) show conditions under which there exist a starshaped set
G such that (

R− rQq (W)

rG(W)
,W

) ∣∣ {R > rQq (W)} d−→ (Z,V), as q→ 1, (2)

where Z ∼ Exp(1) and V ∼ PW .
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rG(W)
,W

) ∣∣ {R > rQq (W)} d−→ (Z,V), as q→ 1, (3)

where Z ∼ Exp(1) and V ∼ PW .

Qq

fRE|W=w1

fRE|W=w2

fRE|W=w3
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PROPOSED MODELS
Imposing structure on Qq, G, and W
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Links between parameters and models

Under appropriate convergence conditions1, it can be shown that the quantile setQq is
asymptotically a scale multiple of the scaling/limit set G, that is,

Qq ≈ αqG, αq > 0, as q→ 1

1Wadsworth & Campbell (2024)
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Links between parameters and models

If the density of X is homothetic with respect to r−1
G , that is,

fX(x) = h0(r−1
G (x)), x ∈ Rd,

for a positive, decreasing, and continuous function h0, then G andW can be linked1 through

rW (w) = fW(w) =
rG(w)d

d|G|
, w ∈ Sd−1.

1Papastathopoulos et al. (2023)
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Imposing structure on Qq, G, and W

Any positive function rB defined on Sd−1 can be written as

rB(w) = βBfB(w), w ∈ Sd−1,

for a constant βB =
∫
Sd−1 rB(w)dw and density fB integrating to 1 on Sd−1.

Using the links G–Qq and G–W , we can formulate a statistical model

rQq (w) = βQq fW(w)d and rG(w) = βG fW(w)d, w ∈ Sd−1.
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X X X X
RE RE RE RE

W W W W
Qq Qq Qq Qq

G G G G

W W W W
M0 M1 M2 M3
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STATISTICAL INFERENCE
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Normalising flows1 and density estimation2

A normalising flow (NF) learns a transformation mapping a random variable Y ∈ Y with
unknown distribution to that of a known, base variable Z ∈ Z .

f Z f Y

Z Y

Figure 1 of Kobyzev et al. (2021)

1Tabak & Vanden-Eijnden (2010), 2Dinh et al. (2015)
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Normalising flows1 and density estimation2

A normalising flow (NF) learns a transformation mapping a random variable Y ∈ Y with
unknown distribution to that of a known, base variable Z ∈ Z .

f Z f Y

Z Y

Z = h−1(Y)

Y = h(Z)

Figure 1 of Kobyzev et al. (2021)

Assuming Y admits a density on Y , this problem can be phrased as aiming to infer a
(bijective and differentiable) transformation function h such that

fY(y) = fZ
{

h−1(y)
} ∣∣∣∣∂h−1(y)

∂y

∣∣∣∣ , y ∈ Y.

In practice, h is modelled as a composition of many simple bijective transformations
h1, . . . , hk, i.e. h = h1 ◦ h2 ◦ . . . ◦ hk.

1Tabak & Vanden-Eijnden (2010), 2Dinh et al. (2017)
J Richards (UoE) CASE 2025 2nd July 2025 13 / 26



A map from the hypersphere to the hypercylinder

Transform the observations and models from Sd−1 to a cylindrical space Cd−1 (by abuse
of notation) via a map T

Cd−1 :=

Figure 6 of Rezende et al. (2020)
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A map from the hypersphere S2 to the hypercylinder C2

W1

W2

W3

T : S2\S3 → C2

w 7→ c =

 w1√
1−w2

3

,
w2√
1−w2

3

, w3


C1

C2

C3e(3)
3

−e(3)
3

S1 × {1}

S1 × {−1}

w1

w2

c1

c2
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A model for PDFs and positive functions on Sd−1

It follows from the map T that a target PDF fB : Sd−1\Sd → [0,∞), describing the shape
of a starshaped set B ∈ Rd a.e., can be written as

fB(w) = fY(T(w))|∂T(w)/∂w|, w ∈ Sd−1\Sd,

for a target PDF fY defined on Cd−1.

Using the NFs formulation, fB can in turn be modelled in terms of a known base PDF
fZ : Cd−1 → [0,∞) and a normalising flow hB as

fB(w) = fZ
{

h−1
B (T(w))

} ∣∣∣∣∣∂h−1
B (T(w))

∂T(w)

∣∣∣∣∣
∣∣∣∣∂T(w)

∂w

∣∣∣∣ , w ∈ Sd−1\Sd,

where |∂T(w)/w| is the Jacobian of the recursive transformation T.

Further, a model for any positive/radial function rB of a starshaped set B – such as the
quantile setQq or the scaling set G – can be obtained via

rB = βBfB

where fB is as above, and βB > 0 is a coefficient to be learned alongside the NF hB.
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Model fitting via loss minimisation

Recall models M0 to M3:
X X X X
RE RE RE RE

W W W W
Qq Qq Qq Qq

G G G G

W W W W
M0 M1 M2 M3

Model M0 is fitted by sequentially minimising the losses
for Qq:

LQq (βQq , fQq ; x) =
1
n

n∑
i=1

max

{
(1 − q)

[
∥xi∥ − βQq fQq

(
xi

∥xi∥

)]
, q

[
∥xi∥ − βQq fQq

(
xi

∥xi∥

)]}
.

for G:

LG(βG , fG ; rQ̂q
, x) = −

1
#E

∑
i∈E

log

[
{βG fG(xi/∥xi∥)}−1

exp

{
−

∥xi∥ − rQ̂q
(xi/∥xi∥)

βG fG(xi/∥xi∥)

}]
.

for W :

LW(fW ; rQ̂q
, x) = −

1
#E

∑
i∈E

log fW(xi/∥xi∥).
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Model fitting via loss minimisation

Recall models M0 to M3:
X X X X
RE RE RE RE

W W W W
Qq Qq Qq Qq

G G G G

W W W W
M0 M1 M2 M3

Model M1 is fitted by sequentially minimising the loss LQq,G,W (βQq , βG , fW ; x) =

= LQq (βQq , f 1/d
W ; x) + λ

[
LG(βG , f 1/d

W ; βQq f 1/d
W , x) + LW (fW ; βQq f 1/d

W , x)
]
.

The model is wholly defined in terms of only one density fW and two scalars βQq and βG .

λ is a weighting hyperparameter accounting for the different scales of the values of the
losses.

Comments on M2 and M3.
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A GRADIENT DESCENT
APPROACH

A PyTorch1 implementation2 of NFs and composite loss minimisation via the Adam optimiser3

Data are mollified4 during training. At the jth of J gradient descent epoch, we use the
mollified dataset

xT,j =
{
∥xi∥wi,ε : wi,ε ∼ vonMises(xi/∥xi∥, σj), xi ∈ xT

}
, (4)

where vonMises(µ,σ) denotes the von Mises distribution with location µ ∈ Sd−1 and
dispersion σ ∈ R>0.

1Paszke et al. (2019), 2Stimper et al. (2023), 3Kingma & Ba (2017), 4Tran et al. (2023)
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PROBABILITY ESTIMATION
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Probability estimation

For any Borel set B ∈ Rd\Qq,

P[X ∈ B | X /∈ Qq] =

∫
Sd−1

∫
B∩]0:w)

1
rG(w)

exp

{
−

r− rQq (w)

rG(w)

}
fW(w)dr dw.

B

Qq
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Probability estimation

For any Borel set B ∈ Rd\Qq, we use the Monte Carlo integration

P[X ∈ B | X /∈ Qq]
P←

1
m

m∑
i=1

∫
B∩]0:wi)

1
rG(wi)

exp

{
−

r− rQq (wi)

rG(wi)

}
dr, n→∞.

where w1, . . . ,wm ∼ fW .

B

Qq

The integral is exact provided one knows all radial entry and exit points of B.

The collection w1, . . . ,wm ∼ fW is sampled fast using the generative direction of the NF.
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Simulation study results – 3 dimensions

CIL CIL CILlog P̂R1
log P̂R2

log P̂R3
CIU CIU CIU

M0 M1 M2 M0 M1 M2 M0 M1 M2

R1
=

[10,∞]3

R2

=

[−5, 5] × [10,∞] × [−10, 10]

R3

=

[−∞, 5] × [5,∞] × [−5, 5]

Boxplots of 100 estimated log-probabilities and associated lower- and upper-bounds of 95% bootstrap
confidence intervals for the sets R1,R2,R3 ∈ R3. (n = 104).
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Simulation study results – 5 dimensions

CIL CIL CILlog P̂R1
log P̂R2

log P̂R3
CIU CIU CIU

M0 M1 M2 M0 M1 M2 M0 M1 M2

R1
=

[10,∞]5

R2

=

[−∞,∞]× [6,∞]× [8,∞]× [6,∞]× [−∞,∞]

R3

=

[−∞,−7]× [−∞, 0]× [−∞,−5]× [−∞, 0]× [−∞,−7]

Boxplots of 100 estimated log-probabilities and associated lower- and upper-bounds of 95% bootstrap
confidence intervals for the sets R1,R2,R3 ∈ R5. (n = 104).
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Simulation study results – 7 dimensions

CIL CIL CILlog P̂R1
log P̂R2

log P̂R3
CIU CIU CIU

M0 M1 M2 M0 M1 M2 M0 M1 M2

R1
=

[10,∞]7

R2

=

[0,∞] × [0,∞] × [5,∞] × [5,∞]
×[0,∞] × [8,∞] × [8,∞]

R3

=

[6,∞] × [−2,∞] × [−∞, 5] × [6,∞]
×[−2,∞] × [−∞, 5] × [6,∞]

Boxplots of 100 estimated log-probabilities and associated lower- and upper-bounds of 95% bootstrap
confidence intervals for the sets R1,R2,R3 ∈ R7. (n = 104).
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Simulation study results – 10 dimensions

CIL CIL CILlog P̂R1
log P̂R2

log P̂R3
CIU CIU CIU

R1
=

[10,∞]10

R2

=

[−∞,∞]× [−∞,∞]× [8,∞]× [8,∞]× [−∞,∞]
×[8,∞]× [−∞,∞]× [8,∞]× [8,∞]× [8,∞]

R3

=

[−∞,−6]× [−∞,−6]× [−∞,∞]× [−∞,∞]× [−∞,−6]
×[−∞,∞]× [−∞,−6]× [∞,−6]× [−∞,∞]× [−∞,∞]

Boxplots of 100 estimated log-probabilities and associated lower- and upper-bounds of 95% bootstrap
confidence intervals for the sets R1,R2,R3 ∈ R10. (n = 5 × 104, 105, 2 × 105).
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LOW AND HIGH WIND
SPEEDS

In relation to electricity production in the
Pacific Northwest, United States
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Pacific Northwest region of the United States1,2

Hourly windspeeds, Jan 1, 2012–Jan 1, 2015.

1Huser et al. (2017), 2Castro-Camilo et al. (2019)
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Wind turbine power curves1

1Hering & Genton (2010)
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Scale-shape homogenisation

Define the windspeed
Xo

j,m,h

at station j in month m of the year and hour h.
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Scale-shape homogenisation

Define the windspeed
Xo

j,m,h

at station j in month m of the year and hour h.

We assume1

Xo
j,m,h ∼ Weibull

(
λj,m,h = sj,1(m) + sj,2(h) , κj,m,h = sj,3(m) + sj,4(h)

)
, (5)

where s denotes a cubic cyclic spline on m ∈ {1, . . . , 12} or h ∈ {0, . . . , 23}.

1Elliott et al. (2004)
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Scale-shape homogenisation

Define the windspeed
Xo

j,m,h

at station j in month m of the year and hour h.

We assume1

Xo
j,m,h ∼ Weibull

(
λj,m,h = sj,1(m) + sj,2(h) , κj,m,h = sj,3(m) + sj,4(h)

)
, (6)

where s denotes a cubic cyclic spline on m ∈ {1, . . . , 12} or h ∈ {0, . . . , 23}.

We fit the model using evgam2 and apply XH
j,m,h := (Xo

j,m,h/λ̂j,m,h)
κ̂j,m,h

month month hour hour

xo
1 xH

1 xo
1 xH

1

1Elliott et al. (2004), 2Youngman (2022)
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Analysis of station configurations – January at 18:00

(a) Minimises probability of no production
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Analysis of station configurations – January at 18:00

(a) Minimises probability of no production (b) Maximises probability of no production
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Analysis of station configurations – January at 18:00

(a) Minimises probability of no production (b) Maximises probability of no production

(c) Maximises probability of full production
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Analysis of seasonality of power production – configuration (a)

m =
h =

m =
h =

P̂ X
J(

E(1
,I

)
m
,h

)

P̂ X
J(

E(2
,I

)
m
,h

)

Month m, Hour h Month m, Hour h

Configuration (a): Minimises probability of no production
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Concluding remarks

The proposed methodology provides

flexible statistical inference for “high” dimensional random vectors;

models bridging parsimony and flexibility by exploiting the geometry of 3 structural
parameters to improve statistical inference.
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Concluding remarks

The proposed methodology provides

flexible statistical inference for “high” dimensional random vectors;

models bridging parsimony and flexibility by exploiting the geometry of 3 structural
parameters to improve statistical inference.

The framework enables

fast inference and relatively fast bootstrapping (with possibility of pre-training);

fast probability estimation enabled by very fast sampling from normalising flows.
See De Monte, L., Huser, R., Papastathopoulos, I., Richards, J. (2025). Generative modelling of
multivariate geometric extremes using normalising flows. arXiv:2505.02957.
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Uniform-on-Sd−1 penalisation

To devise the uniform density on Sd−1, we consider Ad−1(r) the hypervolume (or surface
area) of the (d− 1)-sphere of radius r given by

Ad−1(r) =
2πd/2

Γ(d/2)
rd−1, r ∈ (0,∞),

where Γ denotes the gamma function.

It follows that a PDF with uniform density on Sd−1 is given by

fU(w) = 1/Ad−1(1)

for all w ∈ Sd−1.

Penalisation of fD away from fU can then be performed via the Kullback–Leibler
divergence DKL[fU∥fD] =

∫
Sd−1 log[fU(w)/fD(w)]fU(w) dw.

In practice, this integral is approximated via Monte Carlo integration by sampling a large
number m of directions u1, . . . , um uniformly on Sd−1 and calculating

DKL[fU∥fD] :=
1
m

m∑
i=1

log[fU(ui)/fD(ui)] = − log[Ad−1(1)]−
1
m

m∑
i=1

log[fD(ui)], (7)

with DKL[fU∥fD]
P−→ DKL[fU∥fD] as m→∞.

J Richards (UoE) CASE 2025 2nd July 2025 27 / 26



Model assessment
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Model assessment – A random point measure approach

Under assumptions of uniform convergence on Sd−1,

FR|W

(
R− rQq⋆ (W)

rG⋆ (W)

)1/d

W
∣∣∣ {R > rQq⋆ (W)

}
d−→ UB1(0), as q→ 1,

where rQq⋆ and rG⋆ are deterministic functions of rQq , rG , and fW .

We consider the stationary random point measure

P⋆ :=
n∑

i=1

δ

HWi

(
Ri − rQq⋆ (Wi)

rG⋆ (Wi)

)1/d

Wi

1Ri>rQq⋆ (Wi)
.

We use an adapted version of the standard K-functions to assess if P⋆ is statistically
distinguishable from a random point measure with constant intensity on B1(0).
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Model assessment – A random point measure approach

XH

XS

XP

XH

XS

XP

S2

■ −4.17
■ −1.17

XH/ log(n/2)

XS/

XP/ log(n/2)

log(n/2)

XH

XS

XP

S2

■ − log(4π)

Figure from Papastathopoulos et al. (2023)
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Model assessment – A random point measure approach
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distance (ball)

K

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4
distance (cone)

K

Figure from Papastathopoulos et al. (2023)
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Simulation study results – 3 dimensions

CIL CIL CILlog10 P̂R1 log10 P̂R2 log10 P̂R3CIU CIU CIUCIL CIL CILlog10 P̂R1 log10 P̂R2 log10 P̂R3CIU CIU CIU

M4 M7 M4 M7 M4 M7

R1

=

[10,∞)3

R2

=

[−5, 5] × [10,∞) × [−10, 10]

R3

=

(−∞, 5] × [5,∞) × [−5, 5]
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Simulation study results – 3 dimensions

CIL CIL CILlog10 P̂R1 log10 P̂R2 log10 P̂R3CIU CIU CIUCIL CIL CILlog10 P̂R1 log10 P̂R2 log10 P̂R3CIU CIU CIU

M4 M7 M4 M7 M4 M7

R1

=

[10,∞)5

R2

=

(−∞,∞)× [6,∞)× [8,∞)× [6,∞)× (−∞,∞)

R3

=

(−∞,−7]× (−∞, 0]× (−∞,−5]× (−∞, 0]× (−∞,−7]

J Richards (UoE) CASE 2025 2nd July 2025 32 / 26



Simulation study results – 3 dimensions

CIL CIL CILlog10 P̂R1 log10 P̂R2 log10 P̂R3CIU CIU CIUCIL CIL CILlog10 P̂R1 log10 P̂R2 log10 P̂R3CIU CIU CIU

M4 M7 M4 M7 M4 M7

R1

=

[10,∞)7

R2

=

[0,∞)× [0,∞)× [5,∞)× [5,∞)
×[0,∞)× [8,∞)× [8,∞)

R3

=

[6,∞)× [−2,∞)× (−∞, 5]× [6,∞)
×[−2,∞)× (−∞, 5]× [6,∞)
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