A deep geometric approach to modelling multivariate extremes

Jordan Richards¹ Callum J. R. Murphy-Barltrop^{2,3} Reetam Majumder⁴

¹School of Mathematics, University of Edinburgh

 2 Technische Universität Dresden, Institut Für Mathematische Stochastik, Dresden

³Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Dresden/Leipzig

⁴Southeast Climate Adaptation Science Center, North Carolina State University

Multivariate extremes

- Quantifying extremal dependence is key for risk analysis
- Many classical approaches require restrictive assumptions on joint tail decay, e.g., regular variation, max-stability
- Focus on particular extremes only

Multiple Variables

 OQ

Geometric extremes

- Recent works have shown that deterministic limit sets provide a useful tool for studying extremal dependence [\(Nolde and Wadsworth, 2022;](#page-50-0) [Mackay and Jonathan, 2023;](#page-49-0) [Papastathopoulos et al., 2024\)](#page-50-1).
- The "geometric approach" does not require restrictive parametric assumptions about joint tail decay.

 $\mathcal{A}(\overline{r\mathbb{P}}) \rightarrow \mathcal{A}(\overline{r\mathbb{P}}) \rightarrow \mathcal{A}(\overline{r\mathbb{P}}) \rightarrow \mathcal{A}(\overline{r\mathbb{P}})$

 OQ

- All theory is applicable to d -dimensional random vectors $\boldsymbol{X} \in \mathbb{R}^{d}$ on standard margins, with density function $f(\cdot)$.
- \circ Given *n* independent realisations of **X**, consider scaled sample cloud

$$
C_n:=\{\mathbf{X}_i/r_n;\ i=1,\ldots,n\},\
$$

as $n \to \infty$, where r_n is a suitably chosen normalising sequence. • For exponential (Laplace) margins, $r_n = \log(n)$ ($r_n = \log(n/2)$).

Limit sets

Gaussian copula $\rho = 0.5$ with Laplace margins

 $4\ \Box\ \rightarrow\ 4\ \overline{r}\overline{r}\rightarrow\ 4\ \overline{r}$ $\mathbb{R}^n \times \mathbb{R}^n \to$ \equiv $\circledcirc \circledcirc \circledcirc$ Suppose

$$
-\log f(t\mathbf{x})\sim tg(\mathbf{x}),\;\;t\rightarrow\infty,\;\mathbf{x}\in\mathbb{R}^d,
$$

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

where $g(\cdot)$ is a continuous function on \mathbb{R}^d .

- $g(x)$ is termed the gauge function.
- $g(\mathbf{x})$ is 1-homogeneous, i.e., $g(c\mathbf{x}) = cg(\mathbf{x})$ for any $c > 0$.

• As $n \to \infty$, C_n converges in probability onto the set

$$
\mathcal{G} = \{ \mathbf{x} \in \mathbb{R}^d : g(\mathbf{x}) \leq 1 \} \subseteq [-1,1]^d.
$$

- \circ G is star-shaped and compact (closed and bounded).
- \bullet For some centre o , we have that the lines segment $\{o + tx : t \in [0,1]\} \subset \mathcal{G}$ for all $x \in \mathcal{G}$.
- O Componentwise max $G = (1, \ldots, 1)^T$ and min $G = (-1, \ldots, -1)^T$.

• See [Nolde and Wadsworth \(2022\)](#page-50-0) for further details.

Limit sets

Consider the unit level (boundary) set given by

$$
\partial \mathcal{G} = \{ \mathbf{x} : g(\mathbf{x}) = 1 \} \subseteq [-1,1]^d.
$$

 $4\equiv 1.4\sqrt{m}+4\equiv 1.$

 \equiv \rightarrow \equiv $\circledcirc \circledcirc \circledcirc$

Limit sets

 \bullet There exist links between ∂G and several existing approaches for multivariate extremes: [Ledford and Tawn \(1996\)](#page-49-1), [Heffernan and Tawn](#page-49-2) [\(2004\)](#page-49-2), [Wadsworth and Tawn \(2013\)](#page-51-0) and [Simpson et al. \(2020\)](#page-51-1).

Once we have $\partial \mathcal{G}$, we get the rest for free.

Whereas the above models focus on specific parts of the distribution, knowing ∂G gives you the complete picture of extremal dependence.

 \bullet For example, the approach of [Ledford and Tawn \(1996\)](#page-49-1) when X_F has exponential margins:

$$
\Pr\left(\min_{i=1,\dots,d}\{X_{E,i}\} > u\right) \sim L(e^u)\exp(-u/\eta),
$$

as $u \to \infty$, with $L(\cdot)$ slowly varying and $\eta \in (0,1]$.

 \bullet η quantifies the form of extremal dependence, with asymptotic dependence in X_F implying $\eta = 1$.

Ledford and Tawn

We have that

$$
\eta = \min \left\{ s \in (0,1] : [s,\infty]^d \cap \partial \mathcal{G} = \emptyset \right\}.
$$

K ロ ▶ K (日) K (ミ) K (王) X (三) 2 (0) Q (0)

Ledford and Tawn

Scaled sample cloud

x

イロト イ部 トイミト イミト \equiv $\circledcirc \circledcirc \circledcirc$

Limit sets

Scaled sample cloud

x

イロト イ部 トイミト イミト \equiv $\begin{picture}(16,15) \put(0,0){\line(1,0){15}} \put(10,0){\line(1,0){15}} \put(10,0){\line(1$

Limit sets

 $\circ \widehat{\partial G}$ gives risk metrics; return level sets [\(Papastathopoulos et al.,](#page-50-1) [2024\)](#page-50-1), return curves [\(Murphy-Barltrop et al., 2024\)](#page-49-3) and joint tail probabilities [\(Wadsworth and Campbell, 2024\)](#page-51-2).

 $4 \Box + 4 \Box + 4 \Xi + 4 \Xi + 4 \Xi$

- \bullet Knowing ∂G is invaluable for inference.
- \circ How do we estimate ∂G ?

Many recent approaches have been proposed for estimating ∂G .

- [Simpson and Tawn \(2022\)](#page-50-2) used generalised additive models to approximate ∂G via scaled radii sets.
- [Wadsworth and Campbell \(2024\)](#page-51-2) propose truncated parametric copula models for estimating $\partial \mathcal{G}$.
- [Majumder et al. \(2023\)](#page-49-4) proposed a semi-parametric approach with Bézier polynomials.

 $4 \Box + 4 \Box + 4 \Xi + 4 \Xi + 4 \Xi + 4 \Box$

[Papastathopoulos et al. \(2024\)](#page-50-1) provided a Bayesian inference approach using latent Gaussian variables.

Many more approaches (likely) to follow.

Most require parametric or semi-parametric assumptions about the gauge function $g(\cdot)$:

- Limited to generally low dimension $d \leq 3$;
- Inflexible;
- \bullet Do not necessarily guarantee that estimates of ∂G satisfy the red and blue properties

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

Talk outline

- \bullet Build valid estimators of ∂G using flexible neural networks
- Provide a means to estimate probabilities using an extension of the [Wadsworth and Tawn \(2013\)](#page-51-0) ADF

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

Application to metocean extremes

Radial-angular decomposition

Define the radial and angular components

$$
R:=\|\mathbf{X}\|_2,\quad \mathbf{W}:=\frac{\mathbf{X}}{R},
$$

 $\mathcal{A} \square \vdash \mathcal{A} \overline{\mathcal{B}} \vdash \mathcal{A} \ \overline{\mathcal{B}} \vdash \mathcal{A} \ \overline{\mathcal{B}} \vdash \neg \overline{\mathcal{B}} \qquad \neg \overline{\mathcal{B}} \qquad \neg \overline{\mathcal{A}} \ \mathcal{A} \ \overline{\mathcal{A}}$

so $X = RW$.

 \bullet Observe $||W||_2 = 1$. Therefore, W will always exist on the unit $(d-1)$ -sphere $\mathcal{S}^{d-1}:=\{\mathbf{x}\in\mathbb{R}^d:\|\mathbf{x}\|_2=1\}.$

Data

Laplace margins

 $\circlearrowright\circ \varphi$ E \equiv È

Polar coordinates

Angular−radial decomposition

 $\circledcirc \circledcirc \circledcirc$

 \equiv

 \bullet By star-shaped property of G , we can re-characterise the unit-level set:

$$
\partial \mathcal{G} = \{r \mathbf{w} : r > 0, \mathbf{w} \in \mathcal{S}^{d-1}, g(r \mathbf{w}) = 1\}.
$$

• By homogeneity of $g(\cdot)$, we must have $r = 1/g(\boldsymbol{w})$, implying

$$
\partial \mathcal{G} = \{ \mathbf{w}/g(\mathbf{w}) : \mathbf{w} \in \mathcal{S}^{d-1} \}.
$$

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

To evaluate $\partial\mathcal{G}$, we just need to evaluate $g(\cdot)$ over the sphere $\mathcal{S}^{d-1}.$

Limit set

Scaled sample cloud

x

 $\circlearrowright\circ \varphi$ イロトイ団 トイミトイモト \equiv

Limit set: radially transformed

Angular−radial decomposition

K ロ) - K @) - K 등) - K 등) - - 등 … $\circledcirc \circledcirc \circledcirc$

Proposition

For all $\pmb{\mathsf{w}}\in\mathcal{S}^{d-1}$, we have that $g(\cdot)$ satisfies

 $g(\mathbf{w}) \geq ||\mathbf{w}||_{\infty},$

 $4 \Box + 4 \Box + 4 \Xi + 4 \Xi + 4 \Xi + 4 \Box$

where $||\mathbf{x}||_{\infty} := \max\{|x_1|, \ldots, |x_d|\}$ denotes the infinity norm.

Bound on g : valid estimators

Suppose we have $\textsf{any}\,\,h(\cdot):\mathcal{S}^{d-1}\mapsto\mathbb{R}_+$ satisfies $1/h(\textbf{\textit{w}})\geq||\textbf{\textit{w}}||_{\infty}$ for all $w \in S^{d-1}$. Then:

Proposition

Define the set

$$
\mathcal{H} := \left\{ \mathbf{x} \in \mathbb{R}^d \setminus \{ \mathbf{0}_d \} \middle| ||\mathbf{x}|| \leq h(\mathbf{x}/||\mathbf{x}||) \right\} \bigcup \left\{ \mathbf{0}_d \right\},\
$$

where $\mathbf{0}_d := (0, \ldots, 0)$. Then H is star-shaped, compact, and satisfies $\mathcal{H} \subseteq [-1,1]^d$.

Bound on g : valid estimators

The corresponding unit-level set $\partial \mathcal{H}$ is

$$
\partial \mathcal{H} = \left\{ \boldsymbol{w} h(\boldsymbol{w}) : \boldsymbol{w} \in \mathcal{S}^{d-1} \right\}.
$$

- Whilst $\partial\mathcal{H}\subseteq[-1,1]^d$, it might not satisfy coordinate-wise max and min property of $\partial \mathcal{H}$, i.e., max $\partial \mathcal{H} = \mathbf{1}_d$ and min $\partial \mathcal{H} = -\mathbf{1}_d$
- Can be easily obtained using a straightforward rescaling
- **Implication**: starting with a general radial function $h(\cdot)$ satisfying $h(\mathbf{w}) \ge ||\mathbf{w}||_{\infty}$, we can construct valid unit level sets

Rescaling

For each
$$
i = 1, ..., d
$$
, we define
\n
$$
b_i(w_i) := 1(w_i \ge 0) b_i^U - 1(w_i < 0) b_i^L > 0, \text{ where}
$$
\n
$$
b_i^U := \max \left\{ w_i h(\mathbf{w}) \mid \mathbf{w} \in S^{d-1} \right\} > 0, \text{ and}
$$
\n
$$
b_i^L := \min \left\{ w_i h(\mathbf{w}) \mid \mathbf{w} \in S^{d-1} \right\} < 0.
$$

Using these scaling functions, we define the rescaled set

$$
\widetilde{\partial \mathcal{H}} := \left\{ h(\mathbf{w}) \left(\frac{w_1}{b_1(w_1)}, \ldots, \frac{w_d}{b_d(w_d)} \right) \bigg| \mathbf{w} \in \mathcal{S}^{d-1} \right\}.
$$

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

Proposition

The rescaled set $\partial \tilde{\mathcal{H}}$ is in one-to-one correspondence with $\partial \mathcal{H}$, satisfies $\partial \mathcal{H} \subset [-1,1]^d$, and has componentwise maxima and minima $\mathbf{1}_d$ and $-\mathbf{1}_d$, respectively.

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

Rescaling

Rescaling procedure

x

(ロ) (個) (ミ) (ミ) = ミ のQ(0)

Rescaling

This provides a new construction for valid (rescaled) gauge functions

$$
\tilde{g}(\boldsymbol{w}) := 1 \Big/ \left\| h(\kappa^{-1}(\boldsymbol{w})) \left(\frac{\kappa^{-1}(\boldsymbol{w})_1}{b_1(\kappa^{-1}(\boldsymbol{w})_1)}, \ldots, \frac{\kappa^{-1}(\boldsymbol{w})_d}{b_d(\kappa^{-1}(\boldsymbol{w})_d)} \right) \right\|
$$

where $\kappa(\cdot)$ is a bjiective mapping.

• In practice, we model $h(\cdot)$ using a neural network;

- \circ Compute scaling factors b_i numerically;
- By uniform sampling (many) points on $\mathcal{S}^{d-1}.$

With estimates of $\tilde{g}(\cdot)$, we can get tail probability estimates.

Ledford and Tawn

 \bullet Recall L+T (96):

$$
\Pr\left(\min_{i=1,\dots,d}\{X_{E,i}\} > u\right) \sim L(e^u)\exp(-u/\eta),
$$

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

as $u \to \infty$, with $L(\cdot)$ slowly varying and $\eta \in (0, 1]$.

Angular dependence function (ADF)

[Wadsworth and Tawn \(2013\)](#page-51-0) generalise $L+T$ (96) with the angular dependence function $\lambda(\mathbf{w})$.

For angle $\mathbf{w}=(w_1,\ldots,w_d)^{\mathsf{T}}\in\mathcal{S}_+^{d-1}$:

$$
\Pr\left(\min_{i=1,\dots,d}\{X_{E,i}/w_i\} > u\right) \sim L(e^u; \mathbf{w}) \exp(-\lambda(\mathbf{w})u)
$$

as $u\to\infty$, with $\mathcal{S}_{+}^{d-1}:=\{\boldsymbol{\mathsf{x}}\in\mathbb{R}_{+}^{d}:||\boldsymbol{\mathsf{x}}||=1\}.$

 $\lambda(\mathbf{w})$ quantifies extremal dependence along different rays \mathbf{w} . With $\eta^{-1} = \{ \sqrt{\}$ $\overline{d}\lambda(d^{-1/2},\ldots,d^{-1/2})\}.$

Extended ADF

- Assume W $+$ T (2013) model holds for any reflection cX , where $\boldsymbol{c}\in\{-1,1\}^{d}$ $(\boldsymbol{X}% _{T}^{T}\boldsymbol{\beta})$ on Laplace margins).
- For any $\pmb{w}\in\mathcal{S}^{d-1}\setminus\mathcal{A}$, where $\mathcal{A}:=\bigcup_{i=1}^{d}\{\pmb{w}\in\mathcal{S}^{d-1}:w_i=0\}$ is the intersection of \mathcal{S}^{d-1} with each axis:

$$
\Pr\left(\min_{i=1,\dots,d}\{X_i/w_i\} > u\right) \sim L(e^u; \mathbf{w}) \exp(-\Lambda(\mathbf{w})u), \quad u \to \infty,
$$

where $\Lambda(\mathbf{w})$ denotes the (extended) ADF.

- \bullet Quantifies strength of extremal dependence along any $\pmb{\mathsf{w}}\in\mathcal{S}^{d-1}\setminus\mathcal{A}$ (not $\mathcal{S}_{+}^{d-1})$ as moved from exponential to Laplace margins.
- See, also, [Mackay and Jonathan \(2023\)](#page-49-0).

Extended ADF

Unit-level set $\partial \mathcal{G}$, alongside $\{w/\Lambda(w) : w \in S^{d-1} \setminus \mathcal{A}\}.$

세미 시 세 ラ 시 모 시 시 된 시 그런 시 $\circledcirc \circledcirc \circledcirc$ We prove the following links between Λ and $g/\partial \mathcal{G}$:

\n- \n
$$
g(\mathbf{w}) \geq \Lambda(\mathbf{w}) \geq ||\mathbf{w}||_{\infty};
$$
\n
\n- \n $\Lambda(\mathbf{w}) = ||\mathbf{w}||_{\infty} \times \tilde{\mathbf{t}}_{\mathbf{w}}^{-1}$, where $\tilde{\mathbf{t}}_{\mathbf{w}} = \max\{\mathbf{t} \in [0,1]: \mathbf{t}\tilde{\mathcal{R}}_{\mathbf{w}} \cap \partial \mathcal{G} \neq \emptyset\}$ and $\tilde{\mathcal{R}}_{\mathbf{w}} := \bigotimes_{i=1,\ldots,d} \mathcal{U}_{w_i}$, with $\mathcal{U}_{w_i} := [w_i/||\mathbf{w}||_{\infty}, \infty]$ for $w_i > 0$ and $[-\infty, w_i/||\mathbf{w}||_{\infty}]$ for $w_i < 0$.\n
\n

Can be used to estimate probabilities of the form

$$
Pr(\mathrm{sgn}(x_i)X_i > \mathrm{sgn}(x_i)x_i, i=1,\ldots,d).
$$

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

Extended ADF

Laplace margins

イロトイ団 トイミトイモト \equiv $\begin{picture}(16,15) \put(0,0){\line(1,0){15}} \put(10,0){\line(1,0){15}} \put(10,0){\line(1$

Inference

To estimate $\tilde{g}(\cdot)$:

- \circ Consider R \mid (**W** = **w**).
- Following [Wadsworth and Campbell \(2024\)](#page-51-2), assume

$$
R\mid (\textit{\textbf{W}}=\textit{\textbf{w}},R>r_{\tau}(\textit{\textbf{w}}))\sim \text{truncGamma}(\alpha,\tilde{g}(\textit{\textbf{w}})),
$$

where $\alpha > 0$ and $r_\tau(\mathbf{w}) > 0$ satisfies $Pr\{R \le r_\tau(\mathbf{w}) \mid \mathbf{W} = \mathbf{w}\} = \tau$ for $\tau \in (0,1)$ close to one.

 \circ Then $\tilde{g}(\boldsymbol{w})$ is the rate parameter for the gamma distribution on $(R | W = w, R > r_{\tau}(w)).$

Our inference framework has two steps:

- Estimation of the threshold function $r_{\tau}(\boldsymbol{w})$, $\boldsymbol{w}\in\mathcal{S}^{d-1}$.
- Estimation of the (rescaled) gauge function $\widetilde{g}({\bm{w}})$, ${\bm{w}} \in \mathcal{S}^{d-1}.$

We perform both estimation steps using multilayer perceptrons, say $m(\cdot)$, which take input **w**.

 $4 \Box + 4 \Box + 4 \Xi + 4 \Xi + 4 \Xi + 4 \Box$

- The threshold $r_{\tau}(\cdot) > 0$ is represented as $\exp\{m(\mathbf{w})\}$ and estimated first using quantile regression.
- \bullet We model $h(\mathbf{w}) = \text{ReLU}(m(\mathbf{w})) + ||\mathbf{w}||_{\infty}$ to ensure $h(\mathbf{w}) \geq ||\mathbf{w}||_{\infty}$, and then rescaled to get $\widetilde{g}(\cdot)^1$.

• Inference is performed using Keras for R.

Case study

- NORA10 hindcast dataset (NOrwegian ReAnalysis 10km, [Reistad](#page-50-3) [et al., 2011\)](#page-50-3)
- Gridded product, 3-hourly wave fields at 10 km res.
- covering the Norwegian Sea, the North Sea, and the Barents Sea
- September 1957 December 2009
- \bullet wind speed (ws) measured in m/s, significant wave height (hs) measured in m, and mean sea level pressure (mslp) measured in hPa;

Case study

 $\mathsf{A} \sqsubseteq \mathsf{B} \rightarrow \mathsf{A} \boxtimes \mathsf{B} \rightarrow \mathsf{A} \boxtimes \mathsf{B} \rightarrow \mathsf{A} \boxtimes \mathsf{B}$ \equiv 990

Figure: Pairwise ws, hs, and mslp at one location.

 $Q \sim$

Figure: Pairwise distributions of hs across four locations in transect.

 OQ \leftarrow \Box

Diagnostics - $d = 3$

Figure: QQplots for fit of $\tilde{g}(\cdot)$ and $\Lambda(\cdot)$ for location 85.

イロト イ部 トイミト イミト \equiv $\circledcirc \circledcirc \circledcirc$

Results - $d = 3$

Figure: Limit set (left) and Λ(·) (right) for location 46.

 OQ 4 ロ \rightarrow 4 \oplus \rightarrow 4

Results - $d = 3$

Figure: Unit level set slices for location 46.

세미 시 세 ラ 시 모 시 시 된 시 그런 시

 $\circledcirc \circledcirc \circledcirc$

Results - $d = 5$

Figure: Unit level set slices for transect.

イロト イ部 トイミト イミト

 \equiv

 $\circledcirc \circledcirc \circledcirc$

Conclusions

- "Deep Learning of Multivariate Extremes via a Geometric Representation" is available on arxiv (2406.19936)
- Further theoretical results for limit sets (with Laplace margins)
- Includes simulation study and practical advice for validating model fits

R code available soon!

Fin.

Scan for full details of my research.

《 ロ 》 《 御 》 《 君 》 《 君 》 《 君

 $\circledcirc \circledcirc \circledcirc$

References I

- Heffernan, J. E. and Tawn, J. A. (2004). A conditional approach for multivariate extreme values. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 66:497–546.
- Ledford, A. W. and Tawn, J. A. (1996). Statistics for near independence in multivariate extreme values. Biometrika, 83:169–187.
- Mackay, E. and Jonathan, P. (2023). Modelling multivariate extremes through angular-radial decomposition of the density function. $arXiv$, 2310.12711.
- Majumder, R., Shaby, B. A., Reich, B. J., and Cooley, D. (2023). Semiparametric estimation of the shape of the limiting multivariate point cloud. arXiv, 2306.13257.
- Murphy-Barltrop, C. J. R., Wadsworth, J. L., and Eastoe, E. F. (2024). Improving estimation for asymptotically independent bivariate extremes via global estimators for the angular dependence function. $arXiv$, 2303.13237.

References II

- Nolde, N. and Wadsworth, J. L. (2022). Linking representations for multivariate extremes via a limit set. Advances in Applied Probability, 54:688–717.
- Papastathopoulos, I., de Monte, L., Campbell, R., and Rue, H. (2024). Statistical inference for radially-stable generalized pareto distributions and return level-sets in geometric extremes. arXiv, 2310.06130.
- Reistad, M., Øyvind Breivik, Haakenstad, H., Aarnes, O. J., Furevik, B. R., and Bidlot, J.-R. (2011). A high-resolution hindcast of wind and waves for the north sea, the norwegian sea, and the barents sea. Journal of Geophysical Research, 116:C05019.
- Simpson, E. S. and Tawn, J. A. (2022). Estimating the limiting shape of bivariate scaled sample clouds: with additional benefits of self-consistent inference for existing extremal dependence properties. arXiv, 2207.02626.
- Simpson, E. S., Wadsworth, J. L., and Tawn, J. A. (2020). Determining the dependence structure of multivariate extremes. Biometrika, 107:513–532.
- Wadsworth, J. L. and Campbell, R. (2024). Statistical inference for multivariate extremes via a geometric approach. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2208.14951.

 $4 \Box + 4 \Box + 4 \Xi + 4 \Xi + 4 \Xi + 4 \Box$

Wadsworth, J. L. and Tawn, J. A. (2013). A new representation for multivariate tail probabilities. Bernoulli, 19:2689–2714.