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Multivariate extremes

Quantifying extremal dependence is key for risk analysis

Many classical approaches require restrictive assumptions on joint tail
decay, e.g., regular variation, max-stability

Focus on particular extremes only
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Only X extreme

Only Y extreme
Both extreme



Geometric extremes

Recent works have shown that deterministic limit sets provide a useful
tool for studying extremal dependence (Nolde and Wadsworth, 2022;
Mackay and Jonathan, 2023; Papastathopoulos et al., 2024).

The “geometric approach” does not require restrictive parametric
assumptions about joint tail decay.
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Limit sets

All theory is applicable to d-dimensional random vectors X ∈ Rd on
standard margins, with density function f (·).
Given n independent realisations of X, consider scaled sample cloud

Cn := {Xi/rn; i = 1, . . . , n},

as n → ∞, where rn is a suitably chosen normalising sequence.

For exponential (Laplace) margins, rn = log(n) (rn = log(n/2)).



Limit sets

Gaussian copula ρ = 0.5 with Laplace margins



Limit sets

Suppose
− log f (tx) ∼ tg(x), t → ∞, x ∈ Rd ,

where g(·) is a continuous function on Rd .

g(x) is termed the gauge function.

g(x) is 1-homogeneous, i.e., g(cx) = cg(x) for any c > 0.



Limit sets

As n → ∞, Cn converges in probability onto the set

G = {x ∈ Rd : g(x) ≤ 1} ⊆ [−1, 1]d .

G is star-shaped and compact (closed and bounded).

For some centre o, we have that the lines segment
{o + tx : t ∈ [0, 1]} ⊂ G for all x ∈ G.
Componentwise maxG = (1, . . . , 1)T and minG = (−1, . . . ,−1)T .

See Nolde and Wadsworth (2022) for further details.



Limit sets

Consider the unit level (boundary) set given by

∂G = {x : g(x) = 1} ⊆ [−1, 1]d .
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Limit sets

There exist links between ∂G and several existing approaches for
multivariate extremes: Ledford and Tawn (1996), Heffernan and Tawn
(2004), Wadsworth and Tawn (2013) and Simpson et al. (2020).

Once we have ∂G, we get the rest for free.

Whereas the above models focus on specific parts of the distribution,
knowing ∂G gives you the complete picture of extremal dependence.



Ledford and Tawn

For example, the approach of Ledford and Tawn (1996) when XE has
exponential margins:

Pr

(
min

i=1,...,d
{XE ,i} > u

)
∼ L(eu) exp(−u/η),

as u → ∞, with L(·) slowly varying and η ∈ (0, 1].

η quantifies the form of extremal dependence, with asymptotic
dependence in XE implying η = 1.



Ledford and Tawn

We have that

η = min
{
s ∈ (0, 1] : [s,∞]d ∩ ∂G = ∅

}
.



Ledford and Tawn

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

Scaled sample cloud

x

y



Limit sets
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Limit sets

∂̂G gives risk metrics; return level sets (Papastathopoulos et al.,
2024), return curves (Murphy-Barltrop et al., 2024) and joint tail
probabilities (Wadsworth and Campbell, 2024).

Knowing ∂G is invaluable for inference.

How do we estimate ∂G?



Limit sets

Many recent approaches have been proposed for estimating ∂G.
Simpson and Tawn (2022) used generalised additive models to
approximate ∂G via scaled radii sets.

Wadsworth and Campbell (2024) propose truncated parametric
copula models for estimating ∂G.
Majumder et al. (2023) proposed a semi-parametric approach with
Bézier polynomials.

Papastathopoulos et al. (2024) provided a Bayesian inference
approach using latent Gaussian variables.

Many more approaches (likely) to follow.



Limit sets

Most require parametric or semi-parametric assumptions about the gauge
function g(·):

Limited to generally low dimension d ≤ 3;

Inflexible;

Do not necessarily guarantee that estimates of ∂G satisfy the red and
blue properties



Talk outline

Build valid estimators of ∂G using flexible neural networks

Provide a means to estimate probabilities using an extension of the
Wadsworth and Tawn (2013) ADF

Application to metocean extremes



Radial-angular decomposition

Define the radial and angular components

R := ∥X∥2, W :=
X

R
,

so X = RW.

Observe ∥W ∥2 = 1. Therefore, W will always exist on the unit
(d − 1)-sphere Sd−1 := {x ∈ Rd : ∥x∥2 = 1}.



Data
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Polar coordinates
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Limit set

By star-shaped property of G, we can re-characterise the unit-level set:

∂G = {rw : r > 0,w ∈ Sd−1, g(rw) = 1}.

By homogeneity of g(·), we must have r = 1/g(w), implying

∂G = {w/g(w) : w ∈ Sd−1}.

To evaluate ∂G, we just need to evaluate g(·) over the sphere Sd−1.



Limit set
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Limit set: radially transformed
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Bound on g

Proposition

For all w ∈ Sd−1, we have that g(·) satisfies

g(w) ≥ ||w ||∞,

where ||x ||∞ := max{|x1|, . . . , |xd |} denotes the infinity norm.



Bound on g : valid estimators

Suppose we have any h(·) : Sd−1 7→ R+ satisfies 1/h(w) ≥ ||w ||∞ for all
w ∈ Sd−1. Then:

Proposition

Define the set

H :=

{
x ∈ Rd \ {0d}

∣∣∣∣ ||x || ≤ h(x/||x ||)
}⋃{

0d

}
,

where 0d := (0, . . . , 0). Then H is star-shaped, compact, and satisfies
H ⊆ [−1, 1]d .



Bound on g : valid estimators

The corresponding unit-level set ∂H is

∂H =
{
wh(w) : w ∈ Sd−1

}
.

Whilst ∂H ⊆ [−1, 1]d , it might not satisfy coordinate-wise max and
min property of ∂H, i.e., max ∂H = 1d and min ∂H = −1d

Can be easily obtained using a straightforward rescaling

Implication:starting with a general radial function h(·) satisfying
h(w) ≥ ||w ||∞, we can construct valid unit level sets



Rescaling

For each i = 1, . . . , d , we define
bi (wi ) := 1(wi ≥ 0)bUi − 1(wi < 0)bLi > 0, where

bUi : = max
{
wih(w) | w ∈ Sd−1

}
> 0, and

bLi : = min
{
wih(w) | w ∈ Sd−1

}
< 0.

Using these scaling functions, we define the rescaled set

∂̃H :=

{
h(w)

(
w1

b1(w1)
, . . . ,

wd

bd(wd)

) ∣∣∣∣w ∈ Sd−1

}
.



Rescaling

Proposition

The rescaled set ∂̃H is in one-to-one correspondence with ∂H, satisfies
∂̃H ⊂ [−1, 1]d , and has componentwise maxima and minima 1d and −1d ,
respectively.



Rescaling
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Rescaling

This provides a new construction for valid (rescaled) gauge functions

g̃(w) := 1

/∥∥∥∥h(κ−1(w))

(
κ−1(w)1

b1(κ−1(w)1)
, . . . ,

κ−1(w)d
bd(κ−1(w)d)

)∥∥∥∥
where κ(·) is a bjiective mapping.

In practice, we model h(·) using a neural network;

Compute scaling factors bi numerically;

By uniform sampling (many) points on Sd−1.

With estimates of g̃(·), we can get tail probability estimates.



Ledford and Tawn

Recall L+T (96):

Pr

(
min

i=1,...,d
{XE ,i} > u

)
∼ L(eu) exp(−u/η),

as u → ∞, with L(·) slowly varying and η ∈ (0, 1].



Angular dependence function (ADF)

Wadsworth and Tawn (2013) generalise L+T (96) with the angular
dependence function λ(w).

For angle w = (w1, . . . ,wd)
T ∈ Sd−1

+ :

Pr

(
min

i=1,...,d
{XE ,i/wi} > u

)
∼ L(eu;w) exp(−λ(w)u)

as u → ∞, with Sd−1
+ := {x ∈ Rd

+ : ||x || = 1}.
λ(w) quantifies extremal dependence along different rays w .

With η−1 = {
√
dλ(d−1/2, . . . , d−1/2)}.



Extended ADF

Assume W + T (2013) model holds for any reflection cX , where
c ∈ {−1, 1}d (X on Laplace margins).

For any w ∈ Sd−1 \ A, where A :=
⋃d

i=1{w ∈ Sd−1 : wi = 0} is the
intersection of Sd−1 with each axis:

Pr

(
min

i=1,...,d
{Xi/wi} > u

)
∼ L(eu;w) exp(−Λ(w)u), u → ∞,

where Λ(w) denotes the (extended) ADF.

Quantifies strength of extremal dependence along any w ∈ Sd−1 \ A
(not Sd−1

+ ) as moved from exponential to Laplace margins.

See, also, Mackay and Jonathan (2023).



Extended ADF

Unit-level set ∂G, alongside {w/Λ(w) : w ∈ Sd−1 \ A}.
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Extended ADF

We prove the following links between Λ and g/∂G:
g(w) ≥ Λ(w) ≥ ||w||∞;

Λ(w) = ||w ||∞ × r̃−1
w , where r̃w = max{r ∈ [0, 1] : rR̃w ∩ ∂G ̸= ∅}

and R̃w :=
⊗

i=1,...,d Uwi , with Uwi := [wi/||w ||∞,∞] for wi > 0 and
[−∞,wi/||w ||∞] for wi < 0.

Can be used to estimate probabilities of the form

Pr(sgn(xi )Xi > sgn(xi )xi , i = 1, . . . , d).



Extended ADF



Inference

To estimate g̃(·):
Consider R | (W = w).

Following Wadsworth and Campbell (2024), assume

R | (W = w ,R > rτ (w)) ∼ truncGamma(α, g̃(w)),

where α > 0 and rτ (w) > 0 satisfies Pr{R ≤ rτ (w) | W = w} = τ
for τ ∈ (0, 1) close to one.

Then g̃(w) is the rate parameter for the gamma distribution on
(R | W = w ,R > rτ (w)).



Inference

Our inference framework has two steps:

Estimation of the threshold function rτ (w), w ∈ Sd−1.

Estimation of the (rescaled) gauge function g̃(w), w ∈ Sd−1.

We perform both estimation steps using multilayer perceptrons, say m(·),
which take input w.



Neural net setup

The threshold rτ (·) > 0 is represented as exp{m(w)} and estimated
first using quantile regression.

We model h(w) = ReLU(m(w)) + ||w||∞ to ensure h(w) ≥ ||w||∞,
and then rescaled to get g̃(·)1 .

Inference is performed using Keras for R.

1ReLU(x) = max{x , 0}.



Case study

NORA10 hindcast dataset (NOrwegian ReAnalysis 10km, Reistad
et al., 2011)

Gridded product, 3-hourly wave fields at 10 km res.

covering the Norwegian Sea, the North Sea, and the Barents Sea

September 1957 – December 2009

wind speed (ws) measured in m/s, significant wave height (hs)
measured in m, and mean sea level pressure (mslp) measured in hPa;



Case study
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Figure: Pairwise ws, hs, and mslp at one location.



Figure: Pairwise distributions of hs across four locations in transect.



Diagnostics - d = 3
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Figure: QQplots for fit of g̃(·) and Λ(·) for location 85.



Results - d = 3

Figure: Limit set (left) and Λ(·) (right) for location 46.



Results - d = 3
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Figure: Unit level set slices for location 46.



Results - d = 5
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Figure: Unit level set slices for transect.



Conclusions

“Deep Learning of Multivariate Extremes via a Geometric
Representation” is available on arxiv (2406.19936)

Further theoretical results for limit sets (with Laplace margins)

Includes simulation study and practical advice for validating model fits

R code available soon!



Fin.

Scan for full details of my research.
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