

Motivation

- Fluvial flooding is caused by sustained excessive rainfall over extended periods of time and spatial catchment areas.
- The Met Office develops Global Climate Models, which forecast precipitation. These are run on spatial grid boxes at discrete time steps.
- We are interested in the behaviour of extreme rainfall over different spatial and temporal aggregations, specifically the return levels.

The return-levels for increasing aggregation should monotonically change with aggregation level. However, individual estimates do not always follow this pattern. Further analysis is needed to determine the underlying structure.

Figure 1: Return level curves for decreasing levels of spatial resolution. Data is gridded precipitation, JFD 1979 - 2015, located in the North-West of England.

Aims/Goals

- Establishing a relationship between tail behaviour of local variables and aggregations.
- Incorporating different **extremal dependence** structures.

Aggregation of Multivariate Extremes

Jordan Richards¹, Jonathan Tawn¹, Jennifer Wadsworth¹, Simon Brown² ¹STOR-i, Lancaster University, ²Met Office

Set-up

- Variables, X_i , are assumed to have GPD tails with uncommon scale and shape parameters.
- Dependence between variables is induced using copulas.
- We are interested in the tail of Y, where Y is the average of all X_i . • Y has GPD tails with scale σ_Y and shape ξ_Y , which are greatly affected by the marginal shape parameters and extremal dependence structure.

Extremal Dependence

- **Extremal dependence** is the tendency for extremes to occur together.
- For **multivariate extremes**, this is often represented by pairwise measures between variables.

Extremal dependence is measured using pairwise summary measures, χ and η , where

$$\chi := \lim_{u \to 1} \Pr\{F_1(X_1) > u | F_2(X_2)\}$$

and

$$\Pr\{F_1(X_1) > u, F_2(X_2) > u\} = L\left(\frac{1}{1-u}\right)$$

with L(x) a slowly-varying function, and $\chi \in [0, 1], \eta \in [1/2, 1]$. The pair of measures characterises extremal dependence: • ($\chi > 0, \eta = 1$) corresponds to an **asymptotically dependent** copula

• ($\chi = 0, \eta < 1$) corresponds to an **asymptotically independent** copula

- We consider different copulas, as these determine the dependence structure: • asymptotically dependent (AD) - extreme value copula, perfect dependence
- asymptotically independent (AI) inverted extreme value copula, multivariate Gaussian ($\rho > 0$), independence Note that *d*-dimensional versions of both measures exist. For example, we have $\eta_d \in [1/d, 1]$, where 1/d corresponds to independence.

- $> u\}, \quad X_i \sim F_i$
- $\left(1-u
 ight)^{1/\eta}$ as u
 ightarrow 1,

Results - Homogeneous Shape

We have recently derived the distribution of the sums of d-dimensional random variables with the 5 different copula types and marginal tails with homogeneous shape and scale parameters. The GPD tail of Y has scale and shape parameters (σ_Y, ξ_Y) :

- $(\sigma_Y, \xi_Y) = (\eta_d \sigma, \eta_d \xi)$ if $\xi \leq 0$.
- $(\sigma_Y, \xi_Y) = (K\sigma, \xi)$ if $\xi > 0$.
- structure. For the limiting cases, we have shown that
- K = 1 for perfect dependence.
- $K = d^{\xi-1}$ for independence.

Results - Heterogeneous Shape

We have also considered the effect of **combinations** of marginal shapes on the tail of Y. Regardless of the dependence structure,

- $\xi_Y = \max_i \{\xi_i\}$ if the maximum is positive.
- ξ_Y is a weighted combination of all marginal shape parameters, if the maximum is negative.

References and Acknowledgements

- Coles, S., and Tawn, J. (1996). Journal of the Royal Statistical Society. Series B. Modelling Extremes of the Areal Rainfall Process.
- Ledford, A. W., and Tawn, J. A. (1996). Biometrika. Statistics for Near Independence in Multivariate Extremes.

Thank you to **Met Office** and **EPSRC** for funding this project.

K is not a function of η_d and depends on the margins and the dependence

If the tail of Y is **bounded**, all marginals must contribute to the behaviour. If the tail of Y is **unbounded**, only the heaviest marginal tails contribute.

