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Motivation

Motivation

Likelihood-based inference for spatial extremal processes is
computationally problematic in moderate-to-high dimension (sites) D.

Intractable, or computationally-expensive, likelihood functions
and/or they require (left) censoring to mitigate bias.
We construct a likelihood-free inference technique to emulate
censored likelihood-based inference for these models.
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Motivation

Motivating example: max-stable processes

Max-stable processes (MSPs), which arise as the only possible
non-degenerate limit of pointwise maxima of i.i.d random fields, are
popular models for spatial extremal dependence.

Number of terms in the likelihood grows faster-than-exponentially;

Computational tractability of the likelihood is limited (generally) to
D ≤ 12 (Castruccio et al., 2016);

A lot of time has been spent on researching efficient likelihood-based
inference techniques for MSPs, e.g., via pairwise likelihoods;

Computational issues are compounded by censoring.

Castruccio, S., Huser, R., and Genton, M. G. (2016). High-order composite likelihood inference for max-stable
distributions and processes. JCGS 25.4: 1212-1229.
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Motivation

Motivation: censoring

Likelihood estimators for spatial extremal dependence models are
typically highly biased if spatial extreme events include marginally
non-extreme values (Huser et al., 2016);

Models can also be misspecified, e.g., we may fit a MSP (defined
for pointwise maxima) to all observations;

Can be mitigated in a peaks-over-threshold framework:
treat non-extreme observations as censored, i.e., not fully-observed if
below some high threshold c,
where c is typically taken to be the τ -quantile, for τ < 1 close to one;
decreases the contribution of low observations to the likelihood;

Huser, R., Davison, A. C., and Genton, M. G. (2016). Likelihood estimators for multivariate extremes. Extremes,
19:79–103.
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Motivation

Censoring (cont.)

The contribution of an observation to the censored-likelihood is a
C -variate integral, where C ≤ D is the number of censored values;

Likely to be intractable for any C > 0 and expensive for large C ;

Solution: use likelihood-free methods, e.g., neural estimators.

We want to build a neural estimator that imitates censoring, i.e.,
takes censored data as input and learns to utilise this censoring in
a meaningful way.
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Neural estimation

Neural estimators

A neural estimator θ̂(Z) is a neural network that takes in data Z as
input and provides a parameter point estimate θ as an output.

Their construction is simple:
Sample (many) parameter vectors θ from a prior π.
Simulate Z from the model, conditional on these parameters.
Train a neural network that maps the simulated data Z 7→ θ to the
true parameters by minimising some loss function L(θ, θ̂(Z)).

Strengths:
Likelihood free.
Very fast (once trained) with predictable run-time.
Accurate.
An example of amortised inference.

We adapt neural Bayes estimators to allow for censored data as input.
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Neural estimation

Neural Bayes estimators
Neural Bayes estimators (NBEs) are neural estimators designed to
minimise the Bayes risk (Sainsbury-Dale et al., 2022);

rπ(θ̂(·)) ≡
∫

Θ
L(θ, θ̂(Z))p(Z | θ)dZdπ(θ),

associated with L(·, ·) and π.

They inherit the attractive properties of Bayes estimators
(e.g., consistency, asymptotic efficiency, asymptotic normality);

We minimise the Bayes risk with L as the absolute error loss, which
targets the posterior median;

NBEs have been shown to work well for spatial models and
fully-observed data, but cannot handle censored Z .

Sainsbury-Dale, M., Zammit-Mangion, A., and Huser, R. (2022) .Neural Point Estimation for Fast Optimal
Likelihood-Free Inference. arXiv:2208.12942
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Handling censored inputs

Handling censored inputs

NBEs are usually trained on uncensored data Z;

To emulate censoring, we communicate to the neural network:
i) which values should be treated as censored;
ii) these values should be treated differently to non-censored values.

NBE input specification:
Transform input data Z 7→ Z∗ onto standard margins with a finite
lower-endpoint (this does not alter the dependence structure in Z),
Set “censored values” to constant c∗ outside distribution support,
Train NBE on new input data (Z∗, I) (a two-channel image), where I
is a one-hot encoded map of sites without censoring.

i) Implicitly encoded in I is info. about the dependence model and τ ;
ii) Censored values outside of “normal” range, so treated differently.
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Handling censored inputs

New input

Left: Realisation Z from a max-stable process.
Centre: Z∗ with τ = 0.9 censoring and c∗ = 0.
Right: one-hot encoding I.
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Simulation studies

Models

We consider inference with 3 popular models:
Max-stable process (MSP) and inverted MSP (1/MSP),

HW process (Huser and Wadsworth, 2019),

{Z (s)} = Rδ{W (s)1−δ},

where W is a standard Matérn Gaussian process with the same
margins as the heavy-tailed r.v. R and δ ∈ [0, 1];

If δ ≥ 1/2, then Z (·) is asymptotically dependent.

We illustrate gains in both comp. and stat. efficiency, relative to a
censored likelihood-based approach, using a NBE.

Huser, R. and Wadsworth, J. L. (2019). Modeling spatial processes with unknown extremal dependence class. JASA.
114(525):434–444
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Simulation studies

Simulation study 1: outline

Consider MSP and IMSP (1/MSP) with τ = 0.9;

Both have range λ > 0 and smoothness κ ∈ (0, 2], with unif. priors;

Simulate 200 replicates on a 16× 16 grid;

Compare to the competing likelihood-based approach, i.e.,
censored pairwise-likelihood (cPL);

cPL(∞): all pairs; cPL(3), only those within 3 units.
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Simulation studies

Simulation study 1: results

Marginal test risk (s.d.) evaluated on 1000 test parameter sets.

MSP IMSP
λ κ λ κ

NBE 2.4 (0.1) 1.8 (0.1) 2.6 (0.1) 2.2 (0.1)
cPL (3) 3.5 (0.1) 2.2 (0.1) 4.6 (0.2) 3.2 (0.1)
cPL (∞) 4.3 (0.1) 6.4 (0.2) 5.4 (0.2) 6.8 (0.2)
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Simulation studies

Simulation study 1: joint distribution

Empirical joint dist. of estimates with single true vector θ;
Black: cPL(∞). Blue: cPL(3). Brown: NBE.
NBE captures well the joint distribution, but with lower
variance than the competing likelihood approach.
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Simulation studies

Simulation study 1: conclusion

Takeaways:
NBE gives large improvements in statistical efficiency;
Improvements in computational efficiency!
Amortised NBE takes exactly 0.0016 seconds to evaluate; cPL takes
≈ 2 to 10 minutes.

We also showcase similar gains for r -Pareto, Gaussian and HW
processes.

These NBEs are now ready-to-ship! Anyone with data observed on a
similar grid can immediately get parameter estimates (for these two
models) in milliseconds...but only if they use τ = 0.9.

We can train an estimator for a general τ if we supply τ to the
estimator as an input.

The NBE learns relationship between τ , Z and I.

Jordan Richards (KAUST) jordan.richards@kaust.edu.sa 14 / 24

jordan.richards@kaust.edu.sa


Simulation studies

Simulation study 2: outline

Simulate m = 200 replicates of a HW process on a 16× 16 grid in
[0, 16]× [0, 16];

Model has three parameters with priors λ ∼ Unif(0.2, 10),
κ ∼ Unif(0.5, 2) and δ ∼ Unif(0, 1);

For a test censoring level τ∗ = 0.919, we compare two NBEs; one
trained with τ fixed at τ = τ∗ and one with τ randomly drawn from a
Unif(0.85, 0.95) for each set of replicates used for training;
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Simulation studies

Simulation study 2: results

Marginal test risk (s.d.) evaluated on 1000 test parameter sets with
censoring level τ∗.

τ λ κ δ

random 2.62 (0.07) 2.13 (0.05) 2.98 (0.09)
fixed 2.75 (0.06) 2.41 (0.06) 3.25 (0.10)

We can train an estimator for a general τ .
Randomising τ during training improves the estimator performance.
Implication: a new user will not need to retrain an estimator if they
want to use a different censoring level.
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Simulation studies

Simulation study 2: joint distribution
Different τ : (left) 0.919, (centre) 0.873, (right) 0.851.
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Application

Application
Application to monthly Saudi Arabian PM2.5 (Van Donkelaar et al., 2021)
concentrations shows the computational gains of our amortised estimator.
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Observation of surface average PM2.5 conc. (µg/m3) for Jul. 2012.
Van Donkelaar, A., et al. (2021). Monthly global estimates of fine particulate

matter and their uncertainty. Environmental Science & Technology,
55(22):15287–15300.
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Application

Application (cont.)

Data are arranged on a 242× 182 regular grid; monthly, 1998–2020.

Fit local anisotropic HW processes with τ = 0.9 (five params.);

To all possible subsets of data on G × G grids for smoothing level
G ∈ {4, 8, 16, 24, 32}. This is over 130,000 fits!

Once an estimator is trained (roughly 24 to 72 hours), a single model
fit takes between 1 and 4 milliseconds to estimate.

Speed-up/dimension comparison:
Full censored likelihood-based inference is limited to D ≈ 62 = 36 and
takes roughly 12 hours per estimate;
NBE with D = 322 = 1024 and ≈ 10 million times faster.
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Application

Results
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Application

Results (cont.)
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Concluding remarks

Application (cont.)

We can also perform parameter uncertainty assessment for free, with
1000 bootstrap estimates obtained within seconds;

In total, our analysis uses 130 million model fits...

...which is far more than any comparable application1!

1as far as we know.
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Concluding remarks

Application (cont.)
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Concluding remarks

Conclusion and further work

We adapt NBEs to allow for censored inputs and construct general
estimators that are readily-applicable to new user data and
censoring levels;
We showcase massive gains in computational and statistical efficiency
when using our approach to inference;
Perform a study of Arabian PM2.5 concentration extremes (of
unprecedented scale!).
Further work includes:

Irregularly-sampled spatial data (watch this space!);
Extension to high-dim. priors;
Full posterior estimation;

“Likelihood-free neural Bayes estimators for censored inference with
peaks-over-threshold models” has just gone up on arXiv.
R and Julia packages are in development.
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Concluding remarks
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Thanks for your attention!

Scan for full details of my research.
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