Neural Bayes Estimators for Fast and Efficient Inference with Spatial Peaks-Over-Threshold Models

Jordan Richards¹ Matthew Sainsbury-Dale^{1,2} Andrew Zammit-Mangion² Raphaël Huser¹

¹King Abdullah University of Science and Technology (KAUST)

²Centre for Environmental Informatics, National Institute for Applied Statistics Research Australia, University of Wollongong

Motivation

Likelihood-based inference for spatial extremal processes is computationally problematic in moderate-to-high dimension (sites) *D*.

- Intractable, or computationally-expensive, likelihood functions and/or they require (left) censoring to mitigate bias.
- We construct a likelihood-free inference technique to **emulate censored likelihood-based inference** for these models.

イロト イヨト イヨト

Motivating example: max-stable processes

Max-stable processes (MSPs), which arise as the only possible non-degenerate limit of pointwise maxima of i.i.d random fields, are popular models for spatial extremal dependence.

- Number of terms in the likelihood grows faster-than-exponentially;
- Computational tractability of the likelihood is limited (generally) to *D* ≤ 12 (Castruccio et al., 2016);
- A lot of time has been spent on researching efficient likelihood-based inference techniques for MSPs, e.g., via **pairwise likelihoods**;
- Computational issues are compounded by censoring.

Castruccio, S., Huser, R., and Genton, M. G. (2016). High-order composite likelihood inference for max-stable distributions and processes. JCGS 25.4: 1212-1229.

Motivation: censoring

- Likelihood estimators for spatial extremal dependence models are typically highly biased if spatial extreme events include marginally non-extreme values (Huser et al., 2016);
- Models can also be misspecified, e.g., we may fit a MSP (defined for pointwise maxima) to all observations;
- Can be mitigated in a peaks-over-threshold framework:
 - treat non-extreme observations as **censored**, i.e., **not fully-observed if below some high threshold** *c*,
 - where c is typically taken to be the τ -quantile, for $\tau < 1$ close to one;
 - decreases the contribution of low observations to the likelihood;

Huser, R., Davison, A. C., and Genton, M. G. (2016). Likelihood estimators for multivariate extremes. Extremes, 19:79–103.

Censoring (cont.)

- The contribution of an observation to the censored-likelihood is a C-variate integral, where C ≤ D is the number of censored values;
- Likely to be **intractable** for any C > 0 and **expensive** for large C;
- Solution: use likelihood-free methods, e.g., neural estimators.
- We want to build a neural estimator that **imitates** censoring, i.e., takes censored data as input and **learns to utilise this censoring in** a meaningful way.

イロト イボト イヨト イヨト 二日

Neural estimators

- A neural estimator $\hat{\theta}(Z)$ is a neural network that takes in data Z as input and provides a parameter point estimate θ as an output.
- Their construction is simple:
 - Sample (many) parameter vectors $\boldsymbol{\theta}$ from a prior π .
 - $\,\circ\,$ Simulate Z from the model, conditional on these parameters.
 - Train a neural network that maps the simulated data $\mathbf{Z} \mapsto \boldsymbol{\theta}$ to the true parameters by minimising some loss function $L(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}(\mathbf{Z}))$.
- Strengths:
 - Likelihood free.
 - Very fast (once trained) with predictable run-time.
 - Accurate.
 - An example of amortised inference.
- We adapt neural Bayes estimators to allow for censored data as input.

イロト イヨト イヨト

Neural Bayes estimators

 Neural Bayes estimators (NBEs) are neural estimators designed to minimise the Bayes risk (Sainsbury-Dale et al., 2022);

$$r_{\pi}(\hat{oldsymbol{ heta}}(\cdot)) \equiv \int_{\Theta} L(oldsymbol{ heta}, \hat{oldsymbol{ heta}}(\mathbf{Z})) p(\mathbf{Z} \mid oldsymbol{ heta}) \mathrm{d} \mathbf{Z} \mathrm{d} \pi(oldsymbol{ heta}),$$

associated with $L(\cdot, \cdot)$ and π .

- They inherit the attractive properties of Bayes estimators (e.g., consistency, asymptotic efficiency, asymptotic normality);
- We minimise the Bayes risk with *L* as the absolute error loss, which targets the posterior median;
- NBEs have been shown to work well for **spatial models** and **fully-observed data**, but cannot handle censored *Z*.

Sainsbury-Dale, M., Zammit-Mangion, A., and Huser, R. (2022) .Neural Point Estimation for Fast Optimal Likelihood-Free Inference. arXiv:2208.12942

Handling censored inputs

- NBEs are usually trained on uncensored data Z;
- To emulate censoring, we communicate to the neural network:
 - i) which values should be treated as censored;
 - ii) these values should be treated differently to non-censored values.
- NBE input specification:
 - Transform input data Z → Z* onto standard margins with a finite lower-endpoint (this does not alter the dependence structure in Z),
 - Set "censored values" to constant c* outside distribution support,
 - Train NBE on new input data $(\mathbf{Z}^*, \mathcal{I})$ (a two-channel image), where \mathcal{I} is a one-hot encoded map of sites without censoring.
- i) Implicitly encoded in \mathcal{I} is info. about the dependence model and τ ;
- ii) Censored values outside of "normal" range, so treated differently.

イロト イボト イヨト イヨト

New input

Left: Realisation Z from a max-stable process. Centre: Z* with $\tau = 0.9$ censoring and $c^* = 0$. Right: one-hot encoding \mathcal{I} .

< 17 ▶

Models

We consider inference with 3 popular models:

- Max-stable process (MSP) and inverted MSP (1/MSP),
- HW process (Huser and Wadsworth, 2019),

$$\{Z(\mathbf{s})\} = R^{\delta} \{W(\mathbf{s})^{1-\delta}\},\$$

where W is a standard Matérn Gaussian process with the same margins as the heavy-tailed r.v. R and $\delta \in [0, 1]$;

• If $\delta \geq 1/2$, then $Z(\cdot)$ is asymptotically dependent.

We illustrate gains in both **comp. and stat. efficiency**, relative to a censored likelihood-based approach, using a NBE.

Huser, R. and Wadsworth, J. L. (2019). Modeling spatial processes with unknown extremal dependence class. JASA. 114(525):434–444

Simulation study 1: outline

- Consider MSP and IMSP (1/MSP) with $\tau = 0.9$;
- Both have range $\lambda > 0$ and smoothness $\kappa \in (0, 2]$, with unif. priors;
- Simulate 200 replicates on a 16×16 grid;
- Compare to the competing likelihood-based approach, i.e., censored pairwise-likelihood (cPL);
- $cPL(\infty)$: all pairs; cPL(3), only those within 3 units.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ◇◇◇

Simulation study 1: results

Marginal test risk (s.d.) evaluated on 1000 test parameter sets.

	MSP		IMSP	
	λ	κ	λ	κ
NBE	2.4 (0.1)	1.8 (0.1)	2.6 (0.1)	2.2 (0.1)
cPL (3)	3.5 (0.1)	2.2 (0.1)	4.6 (0.2)	3.2 (0.1)
cPL (∞)	4.3 (0.1)	6.4 (0.2)	5.4 (0.2)	6.8 (0.2)

Э

イロト イポト イヨト イヨト

Simulation study 1: joint distribution

- Empirical joint dist. of estimates with single true vector θ ;
- Black: $cPL(\infty)$. Blue: cPL(3). Brown: NBE.
- NBE captures well the joint distribution, but with lower variance than the competing likelihood approach.

Simulation study 1: conclusion

- Takeaways:
 - NBE gives large improvements in statistical efficiency;
 - Improvements in computational efficiency! Amortised NBE takes exactly 0.0016 seconds to evaluate; cPL takes \approx 2 to 10 minutes.
- We also showcase similar gains for *r*-Pareto, Gaussian and HW processes.
- These NBEs are now ready-to-ship! Anyone with data observed on a similar grid can immediately get parameter estimates (for these two models) in milliseconds...but only if they use $\tau = 0.9$.
- We can train an estimator for a general τ if we **supply** τ **to the estimator** as an input.
- The NBE learns relationship between τ , **Z** and \mathcal{I} .

- コ ト ス 四 ト ス 三 ト ス 日 ト

Simulation study 2: outline

- Simulate m = 200 replicates of a HW process on a 16×16 grid in $[0, 16] \times [0, 16]$;
- Model has three parameters with priors $\lambda \sim \text{Unif}(0.2, 10)$, $\kappa \sim \text{Unif}(0.5, 2)$ and $\delta \sim \text{Unif}(0, 1)$;
- For a test censoring level $\tau^* = 0.919$, we compare two NBEs; one trained with τ fixed at $\tau = \tau^*$ and one with τ randomly drawn from a Unif(0.85, 0.95) for each set of replicates used for training;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Simulation study 2: results

Marginal test risk (s.d.) evaluated on 1000 test parameter sets with censoring level τ^* .

au	λ	κ	δ
random	2.62 (0.07)	2.13 (0.05)	2.98 (0.09)
fixed	2.75 (0.06)	2.41 (0.06)	3.25 (0.10)

- We can train an estimator for a general τ .
- Randomising au during training improves the estimator performance.
- **Implication**: a new user will not need to retrain an estimator if they want to use a different censoring level.

< ロ ト < 同 ト < 三 ト < 三 ト - 三

Simulation study 2: joint distribution

Different τ : (left) 0.919, (centre) 0.873, (right) 0.851.

Jordan Richards (KAUST)

Application

Application to monthly Saudi Arabian $PM_{2.5}$ (Van Donkelaar et al., 2021) concentrations shows the computational gains of our amortised estimator.

Observation of surface average $PM_{2.5}$ conc. ($\mu g/m^3$) for Jul. 2012.

Van Donkelaar, A., et al. (2021). Monthly global estimates of fine particulate matter and their uncertainty. *Environmental Science & Technology*, 55(22):15287–15300.

Jordan Richards (KAUST)

Application (cont.)

- $\bullet\,$ Data are arranged on a 242 $\times\,182$ regular grid; monthly, 1998–2020.
- Fit local anisotropic HW processes with $\tau = 0.9$ (five params.);
- To all possible subsets of data on $G \times G$ grids for smoothing level $G \in \{4, 8, 16, 24, 32\}$. This is over 130,000 fits!
- Once an estimator is trained (roughly 24 to 72 hours), a single model fit takes between 1 and 4 milliseconds to estimate.
- Speed-up/dimension comparison:
 - Full censored likelihood-based inference is limited to $D \approx 6^2 = 36$ and takes roughly 12 hours per estimate;
 - NBE with $D=32^2=1024$ and pprox 10 million times faster

イロト 不得 トイラト イラト 二日

Application (cont.)

- $\,$ $\,$ Data are arranged on a 242 \times 182 regular grid; monthly, 1998–2020.
- Fit local anisotropic HW processes with $\tau = 0.9$ (five params.);
- To all possible subsets of data on $G \times G$ grids for smoothing level $G \in \{4, 8, 16, 24, 32\}$. This is over 130,000 fits!
- Once an estimator is trained (roughly 24 to 72 hours), a single model fit takes between 1 and 4 milliseconds to estimate.
- Speed-up/dimension comparison:
 - Full censored likelihood-based inference is limited to $D \approx 6^2 = 36$ and takes roughly 12 hours per estimate;
 - ${}_{\odot}$ NBE with $D=32^2=1024$ and \approx 10 million times faster.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ○ ◆ ○ ◆

Application

Results

 λ (left) and δ (right) estimates for G = 4.

Э

<ロト < 団ト < 団ト < 団ト

Results (cont.)

 λ (left) and δ (right) estimates for G = 16.

Э

イロト イロト イヨト イヨト

Application (cont.)

 We can also perform parameter uncertainty assessment for free, with 1000 bootstrap estimates obtained within seconds;

• In total, our analysis uses 130 million model fits...

• ...which is far more than any comparable application¹!

Application (cont.)

- We can also perform parameter uncertainty assessment for free, with 1000 bootstrap estimates obtained within seconds;
- In total, our analysis uses 130 million model fits...
- ...which is far more than any comparable application¹!

¹as far as we know.

Conclusion and further work

- We adapt NBEs to allow for censored inputs and construct general estimators that are readily-applicable to new user data and censoring levels;
- We showcase massive gains in computational and statistical efficiency when using our approach to inference;
- Perform a study of Arabian PM_{2.5} concentration extremes (of unprecedented scale!).
- Further work includes:
 - Irregularly-sampled spatial data (watch this space!);
 - Extension to high-dim. priors;
 - Full posterior estimation;
- "Likelihood-free neural Bayes estimators for censored inference with peaks-over-threshold models" has just gone up on arXiv.
- R and Julia packages are in development.

3

References

Huser, R. and Wadsworth, J. L. (2019). Modeling spatial processes with unknown extremal dependence class. *Journal of the American Statistical Association*, 114(525):434–444.
 Sainsbury-Dale, M., Zammit-Mangion, A., and Huser, R. (2022). Neural point estimation for fast optimal likelihood-free inference. *arXiv preprint arXiv:2208.12942*.

Thanks for your attention!

Scan for full details of my research.

Jordan Richards (KAUST)

jordan.richards@kaust.edu.sa