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Motivation

To build (extreme/quantile) regression models
that balance:
• interpretability,
• scalability,
•high predictive accuracy,
• asymptotic and theoretical justification,
which can jointly estimate extreme quantiles
and identify drivers of environmental risk.

Partially-interpretable Neural
Networks (PINNs)

Let {Y (s, t) : s ∈ S, t ∈ T } be a spatio-temporal
process, and let x(s, t) be a d-dimensional vector
of predictors observed at (s, t).
The PINN framework models some function or
statistical parameter, denoted θ(s, t), of Y (s, t) by
splitting x(s, t) into two complementary subsets:
• “interpreted” predictors - xI(s, t),
• “non-interpreted” predictors - xN (s, t),
with the indices that map x(s, t) to these subsets
consistent across all (s, t). Then we let

θ(s, t) = h[mI{xI(s, t)} +mN{xN (s, t)}],
where h is a link function and
•mI is a readily-interpretable function,
e.g., linear or additive,
•mN is assumed unknown and highly non-linear.
We estimate mN using a neural network,
e.g., densely-connected, convolutional, recurrent.

Models

We fit the following statistical models
(implemented in the R package pinnEV):
•GPD(σ, ξ > 0), with θ(s, t) := σ(s, t),
•bGEV(µ, σ, ξ > 0),
with θ1(s, t) := µ(s, t) and θ2(s, t) := σ(s, t)
• (extreme value) point process model,
• single τ -quantile estimation,
with Pr{Y (s, t) < θ(s, t)} = τ ,
•Bernoulli, when Y (s, t) ∈ {0, 1}.
These are trained by minimising the negative
log-likelihood associated with the above models.

Application to wildfire risk

We model the occurrence and extremes of wildfire
spread in the U.S. and the Mediterranean.
•Response Y (s, t) is monthly aggregated burnt
area for a spatial grid-box,
•d > 30 predictors, including:
•meteorological variables from ERA5,
• land cover types from COPERNICUS,
• orography, such as elevation and terrain roughness,
•We interpret the effect of vapour pressure
deficit, 2m temperature and a drought index.

Related and further work

•GCNNs for irregularly spaced data
•Saudi Arabian PM2.5 concentration modelling
• Implementation of new response distributions
(suggestions welcome!)

Results
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Figure: Monthly log(1 + burnt area) for August 2008. Observation (left) and estimated extreme q-quantiles (right).
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Figure: Functional box-plots for the impact of interpreted predictors on the log-odds of wildfire occurrence probability, p0.
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