Partially-interpretable Neural Networks for Extreme
Quantile Regression

. _I.- ..'”9 fagi_v_ll_lm | Jordan Richards and Raphael Huser

%; ’ King Abdullah University of CEMSE Division, King Abdullah University of Science and Technology (KAUST). eXxt v

science and lechnology

E-mail: jordan.richards@kaust.edu.sa

Motivation Models
To build (extreme/quantile) regression models We fit the following statistical models
that balance: (implemented in the R package pinnEV):
e interpretability, ® G?D(O,f > O), with (9(8, t) = (T(S, t),
e scalability, * bGEV(u, 0,8 > 0),

with 61(s,t) := u(s,t) and (s, t) := o(s, 1)

o (extreme value) point process model,

e high predictive accuracy,

e asymptotic and theoretical justification,

o = N w ESN ()] (o)} ~ (o]

e single T-quantile estimation,
with Pr{Y (s,t) < 0(s,t)} = T,
e Bernoulli, when Y'(s,t) € {0, 1}.

which can jointly estimate extreme quantiles P e o A J = o, T

and identify drivers of environmental risk. Figure: Monthly log(1 + burnt area) for August 2008. Observation (left) and estimated extreme g-quantiles (right).

These are trained by minimising the negative
log-likelihood associated with the above models.

Po: VPD (Pa) Po: 2m temperature (K) Po: 3—month SPI

Partially-interpretable Neural
Networks (PINNSs)

Application to wildfire risk

Let {Y(s,t): s € S,t € T} be a spatio-temporal
process, and let x(s,t) be a d-dimensional vector We model the occurrence and extremes ot wildfire

of predictors observed at (s, t). spread in the U.S. and the Mediterranean.
The PINN framework models some function or

statistical parameter, denoted (s, 1), of Y (s, ) by
splitting x(s, t) into two complementary subsets:
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» Response Y (s, t) is monthly aggregated burnt | l l l
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e d > 30 predictors, including:

O “interpreted” predietors _ XI(S, t) , e meteorological variables from ERASD,
e land cover types from COPERNICUS,

e orography, such as elevation and terrain roughness,

Figure: Functional box-plots for the impact of interpreted predictors on the log-odds of wildfire occurrence probability, py.

o “non-interpreted” predictors - xps(s, t),

with the indices that map x(s,t) to these subsets o We interpret the effect of vapour pressure References
consistent across all (s,¢). Then we let deficit, 2m temperature and a drought index.
0(s,t) = hlmz{xz(s,t)} + ma{xn(s,t)}], 1] J. Richards.
where A is a link function and Related and further work I}){lr;r;]illz;ggartlally—Interpretable Neural Networks for modelling of Extreme Values, 2022.
e my is a readily-interpretable tunction, 9] J. Richards and R. Huser.
e.g., linear or additive, e GCNNs for irregularly spaced data A unifying partially-interpretable framework for neural network-based extreme quantile regression, 2022.

arXiw:2208.07581.

, , . S . 3] J. Richards, R. Huser, E. Bevacqua, and J. Zscheischler.
We estimate my wusing a neural network, ® Implementation of new response distributions Insights into the drivers and spatio-temporal trends of extreme Mediterranean wildfires with statistical deep-learning, 2022.

e.g., densely-connected, convolutional, recurrent. (suggestions welcomel) Ongoing.

e mys is assumed unknown and highly non-linear. e Saudi Arabian PMs 5 concentration modelling
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