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Motivation

Motivation

Recent years have seen devastating wildfires in Europe—100s of
deaths and millions of km2 of destroyed land and agriculture

In 2021, global wildfires contributed to ≈ 1760 Mt of carbon
emissions

To mitigate risk, need to identity drivers and high-risk areas—High
quantiles of burnt area are natural risk measures
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Extreme quantile regression

Extreme quantile regression
We perform quantile regression with the response taken to be aggregated
burnt area for spatio-temporal grid-box.

Typical quantiles of interest will be larger than previously observed
⇒ non-parametric quantile regression likely to perform poorly
Instead turn to parametric regression using asymptotically-justified
extreme-value (EV) distributions (e.g., GEV, GPD, Point Process
approach) with parameter set θ
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Maps of log(1 + BA): August, 2001 (left) and October, 2017 (right).
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Extreme quantile regression

Existing approaches

Existing approaches for parametric extreme quantile regression
represent θ as linear or additive functions of predictors x ∈ Rd , i.e., θ(x)

Linear models are unable to capture non-linear structure so perform
poorly for complex problems, e.g., wildfire occurrence and spread
Spline-based regression models can capture non-linear relationships,
but scale poorly to high dimensions—We consider d = 38 predictors

We instead use deep learning based on neural networks (NNs) as
these methods can

capture complex structures (e.g., interactions) in x,
scale well to high dimensions,
facilitate high predictive accuracy.

Jordan Richards (KAUST) jordan.richards@kaust.edu.sa 4 / 22

jordan.richards@kaust.edu.sa


Deep learning for extremes

Deep learning for extremes

Statisticians generally avoid the use of neural networks.
NNs are a “black box” in the sense that it is difficult/impossible to
interpret their output—no good for understanding the drivers of risk
We extend the partially-linear quantile regression NN of
[Zhong and Wang, 2021] and create NNs that are
“partially-interpretable” (PINNs)
The effects of some predictors on response are modelled using
readily-interpretable functions, while the rest feed a NN
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Deep learning for extremes

Partially interpretable neural network (PINN) framework

Let the response follow F(θ(x)) with parameter set
θ(x) = (θ1(x), θ2(x), . . . ). Then for i = 1, 2, . . . ,

Split predictor set x into two complementary subsets
x(i)
I (“interpretable”), and x(i)

N (“non-interpretable”)
Let

θi(x) = hi [m(i)
I {x

(i)
I }+ m(i)

N {x
(i)
N }],

for link hi : R→ R
Interpretable: further split into linear/additive terms as
m(i)
L {x

(i)
L }+ m(i)

A {x
(i)
A }

Non-interpretable: feed a neural network m(i)
N

All functions estimated simultaneously by minimizing neg.
log-likelihood for F , by exploiting variants of stoch. gradient descent
using the R interface to Keras/Tensorflow
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Deep learning for extremes

Downloaded from https://statsoft.org/
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Deep learning for extremes

GAM, GLM or NN on the boundary of the parameter space.
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Deep learning for extremes

Specification of mN

We estimate mN using a NN:
There are no fundamental restrictions on the complexity of the
architecture (size, depth, type, etc.) of this NN⇒We consider
complexity ranging from hundreds to tens-of-thousands of parameters
Different types of NN can be used depending on structure in x. We
use densely-connected (standard) and CNNs
Both fully-linear and fully-additive models are often outperformed by
even the simplest NN
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Deep learning for extremes

Model comparison—Parameter functional form

From [Richards and Huser, 2022], who model U.S. wildfire spread:
Table 1: Comparison of θi(s, t) forms. Metrics are averaged over five folds. Values of the
loss, AIC and twCRPS are given as the absolute difference to the lowest across all models.

θi(s, t)
Number of
parameters

Training
loss

Validation
loss

Training
AIC

In/Out-sample

sMAD (×10−2) twCRPS

fully-linear 43 7754 1661 14389 15.8/16.2 253.8
fully-GAM 803 5810 1214 12020 14.2/14.8 203.1
fully-NN 603 0 0 0 6.01/7.41 0

lin+GAM 689 6119 1282 12411 15.3/15.8 211.6
lin+NN 477 2055 428 3859 7.74/9.05 74.0

GAM+NN 743 1776 365 3834 8.37/9.44 64.8
lin+GAM+NN 629 1851 394 3754 7.55/8.98 63.6

dictors are used for mL, except in the fully-linear case where mL is applied to all predictors.

The same predictors are used in mA for all models, except in the fully-GAM and GAM-NN

cases, where mA is a function of all predictors and the interpreted predictors, respectively.

Table 1 gives the average of the goodness-of-fit and prediction metrics, described in Sec-

tion 4.2, over the five folds, for each candidate model. We observe that the inclusion of a NN

component in θi(s, t) leads to vast improvements in the twCRPS and all measures of fit when

compared to models composed of only splines or linear functions; these measures include the

training AIC, which experiences a vast drop even with the large increase in the number of

model parameters. Whilst the fully-NN model gives the best fit and predictive performance,

we still observe good performance from the GAM+NN and lin+GAM+NN models, which

provides therefore a good compromise between predictive power and interpretability. We

find that the lin+GAM+NN actually performs slightly better than the GAM+NN model,

providing evidence to support our choice of linearity enforcement that we made in Section 4.2.

4.3 Analysis

4.3.1 Overview

We proceed with our final analysis of the data and conduct inference on the spread and

occurrence of wildfires. Two models are fitted to the data and evaluated: a model for

wildfire occurrences, i.e., p0(s, t) := Pr{Y (s, t) > 0 | X(s, t) = x(s, t)} and a model for

spread, i.e.,
√
Y (s, t) | {Y (s, t) > 0,X(s, t) = x(s, t)}. We model extreme spread using

19
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Application: wildfire risk assessment

Data application

Monthly burnt area (BA) for Mediterranean European wildfires

FireCCI database, generated by MODIS data

2001-2020, June–November

≈ 10000 locations, ≈ 1.2M feasible locations, 102240 non-zero values
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Maps of log(1 + BA): August, 2001 (left) and October, 2017 (right).
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Application: wildfire risk assessment

Predictors

Land cover maps (COPERNICUS) with proportion of grid cells
consisting of one of 21 types, e.g., water, urban areas, grassland

13 meteorological variables from ERA-5 reanalysis on single levels,
e.g., temperature, wind-speed components, surface pressure

Mean, and s.d., of altitude and long/lat coordinates
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Temperature (left) and grassland proportion (right) for August, 2001.
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Application: wildfire risk assessment

Model

We model the occurrence and extreme spread of wildfire separately.

We use a logistic regression model for occurrence probability p0(x)

For extreme wildfire spread, we model

{BA− u(x)}|{BA > u(x), x} ∼ GPD∗(σ(x), ξ > 0; u(x))

where u(x) > 0 is a high-threshold and (severity) scale σ(x) > 0

GPD∗(σ, ξ; u) = GPD(σ + ξu, ξ) is parameterised so that scale σ is
independent of u(x)

Shape fixed over space and time with ξ̂ = 0.322 (0.280, 0.353)
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Application: wildfire risk assessment

Model

We interpret the effect of vapour pressure deficit (VPD), 2m air
temperature and a drought index, three-month SPI, on p0 and σ,
using splines

mN is a 5-layered CNN for p0 (≈ 14, 000 pars.) and a 4-layered
densely-connected network for σ (720 + 1 pars.)

Training/testing/validation used to reduce over-fitting and perform
model/architecture comparison

Parameter uncertainty assessed using a stationary
bootstrap—Results presented as average over 250 samples
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Application: wildfire risk assessment

Drivers of wildfire occurrence
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Functional box-plots of estimated mI(x) for p0.
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Application: wildfire risk assessment

Risk assessment
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Observed log(1 + BA) (left) and estimated extreme q-quantiles (right) for
August 2001.
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Application: wildfire risk assessment

Risk assessment
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August 2001.
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Application: wildfire risk assessment

Impacts of long-term climate trends

What would the distribution have looked like in August 2001, but with
predicted air temperature values for 2020? How do the values of p0
and extreme quantiles change under these conditions?
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Estimated trends in August 2m air temperature (K).
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Application: wildfire risk assessment
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Median changes in p0 (left) and 95% quantile of spread (right).
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Application: wildfire risk assessment

Summary

We propose a (very) flexible framework for fitting statistical
regression models that combines the high-predictive accuracy of
neural networks (“guaranteed” by universal function approximation
theorems) with the interpretability of linear and additive models

Model fits very well to wildfire data and reveals new insights into the
climatic drivers of extreme wildfires and climate change impacts

Extreme value and classical statistical models implemented in the R
package, pinnEV
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Application: wildfire risk assessment
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Application: wildfire risk assessment

Thanks for your attention!

Scan for full details of my research.
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