Modelling the tail behaviour of precipitation aggregates using conditional spatial extremes

> Jordan Richards¹, Jonathan Tawn¹, Simon Brown² ¹STOR-i, Lancaster University, ²UK Met Office

> > December 19, 2020

• River flooding caused by high intensity rainfall. Flooding \rightarrow damage \rightarrow cost

- Flooding not caused by rain at a single location, rather spatial aggregate over catchment area
- For spatial process {Y(s)} observed at sampling locations (spatial sets) s = (s₁,...,s_d) ⊂ S, interested in behaviour of aggregate R_A = ¹/_{|A|} ∫_A Y(s)ds for A ⊆ S (or equivalent sum)
- Particularly interested in extremal behaviour (return levels) largest events likely to be the most damaging
- Can just take sample aggregate R_A use *GPD* modelling and extrapolate into tails

- River flooding caused by high intensity rainfall. Flooding \rightarrow damage \rightarrow cost
- Flooding not caused by rain at a single location, rather spatial aggregate over catchment area
- For spatial process {Y(s)} observed at sampling locations (spatial sets) s = (s₁,...,s_d) ⊂ S, interested in behaviour of aggregate R_A = ¹/_{|A|} ∫_A Y(s)ds for A ⊆ S (or equivalent sum)
- Particularly interested in extremal behaviour (return levels) largest events likely to be the most damaging
- Can just take sample aggregate R_A use *GPD* modelling and extrapolate into tails

- River flooding caused by high intensity rainfall. Flooding \rightarrow damage \rightarrow cost
- Flooding not caused by rain at a single location, rather spatial aggregate over catchment area
- For spatial process $\{Y(s)\}$ observed at sampling locations (spatial sets) $s = (s_1, \ldots, s_d) \subset S$, interested in behaviour of aggregate $R_A = \frac{1}{|A|} \int_A Y(s) ds$ for $A \subseteq S$ (or equivalent sum)
- Particularly interested in extremal behaviour (return levels) largest events likely to be the most damaging
- Can just take sample aggregate R_A use *GPD* modelling and extrapolate into tails

- River flooding caused by high intensity rainfall. Flooding \rightarrow damage \rightarrow cost
- Flooding not caused by rain at a single location, rather spatial aggregate over catchment area
- For spatial process {Y(s)} observed at sampling locations (spatial sets) s = (s₁,...,s_d) ⊂ S, interested in behaviour of aggregate R_A = ¹/_{|A|} ∫_A Y(s)ds for A ⊆ S (or equivalent sum)
- Particularly interested in extremal behaviour (return levels) largest events likely to be the most damaging
- Can just take sample aggregate *R_A* use *GPD* modelling and extrapolate into tails

- River flooding caused by high intensity rainfall. Flooding \rightarrow damage \rightarrow cost
- Flooding not caused by rain at a single location, rather spatial aggregate over catchment area
- For spatial process {Y(s)} observed at sampling locations (spatial sets) s = (s₁,...,s_d) ⊂ S, interested in behaviour of aggregate R_A = ¹/_{|A|} ∫_A Y(s)ds for A ⊆ S (or equivalent sum)
- Particularly interested in extremal behaviour (return levels) largest events likely to be the most damaging
- Can just take sample aggregate R_A use *GPD* modelling and extrapolate into tails

• Wasteful - Orders of magnitude less data to work with

- Takes no information from the underlying marginal process or dependence structure → Could potentially lead to inconsistent inference i.e., no natural ordering of estimated return levels where physically appropriate
- Idea model entire process, simulate, aggregate, use realisations for inference

- Wasteful Orders of magnitude less data to work with
- Takes no information from the underlying marginal process or dependence structure → Could potentially lead to inconsistent inference i.e., no natural ordering of estimated return levels where physically appropriate
- Idea model entire process, simulate, aggregate, use realisations for inference

- Wasteful Orders of magnitude less data to work with
- Takes no information from the underlying marginal process or dependence structure \rightarrow Could potentially lead to inconsistent inference i.e., no natural ordering of estimated return levels where physically appropriate
- Idea model entire process, simulate, aggregate, use realisations for inference

• Model for marginal extremes and extremal dependence

- Focus on modelling extremes of process largest values of underlying process produce largest values of aggregate
- Marginal model at each site -
 - GPD above threshold, empirical below
 - Spatial smoothing through GAMs [Youngman, 2019]
- Transform observed process to $\{X(s)\}$ with standardised margins

- Model for marginal extremes and extremal dependence
- Focus on modelling extremes of process largest values of underlying process produce largest values of aggregate
- Marginal model at each site -
 - GPD above threshold, empirical below
 - Spatial smoothing through GAMs [Youngman, 2019]
- Transform observed process to $\{X(s)\}$ with standardised margins

- Model for marginal extremes and extremal dependence
- Focus on modelling extremes of process largest values of underlying process produce largest values of aggregate
- Marginal model at each site -
 - GPD above threshold, empirical below
 - Spatial smoothing through GAMs [Youngman, 2019]
- Transform observed process to $\{X(s)\}$ with standardised margins

- Model for marginal extremes and extremal dependence
- Focus on modelling extremes of process largest values of underlying process produce largest values of aggregate
- Marginal model at each site -
 - GPD above threshold, empirical below
 - Spatial smoothing through GAMs [Youngman, 2019]
- Transform observed process to $\{X(s)\}$ with standardised margins

- Model for marginal extremes and extremal dependence
- Focus on modelling extremes of process largest values of underlying process produce largest values of aggregate
- Marginal model at each site -
 - GPD above threshold, empirical below
 - Spatial smoothing through GAMs [Youngman, 2019]
- Transform observed process to $\{X(s)\}$ with standardised margins

- Model for marginal extremes and extremal dependence
- Focus on modelling extremes of process largest values of underlying process produce largest values of aggregate
- Marginal model at each site -
 - GPD above threshold, empirical below
 - Spatial smoothing through GAMs [Youngman, 2019]
- Transform observed process to $\{X(s)\}$ with standardised margins

General outline for spatial conditional extremes [Wadsworth and Tawn, 2019]

- Spatial process {X(s) : s ∈ S} with standard exponential upper-tailed margins (standard Laplace)
- Condition on observing high value of process at conditioning site i.e., $X(s_0) > u$
- Model (normalised) process

More formally...

General outline for spatial conditional extremes [Wadsworth and Tawn, 2019]

- Spatial process {X(s) : s ∈ S} with standard exponential upper-tailed margins (standard Laplace)
- Condition on observing high value of process at conditioning site i.e., $X(s_0) > u$
- Model (normalised) process

More formally ...

General outline for spatial conditional extremes [Wadsworth and Tawn, 2019]

- Spatial process {X(s) : s ∈ S} with standard exponential upper-tailed margins (standard Laplace)
- Condition on observing high value of process at conditioning site i.e., $X(s_0) > u$
- Model (normalised) process

More formally...

Dependence model

For locations $\{s_1, \ldots, s_d; d \in \mathbb{N}\}$, assume that there exists normalising functions $\{a_{s-s_0} : \mathbb{R} \to \mathbb{R}, s \in S\}$, with $a_0(x) = x$, and $\{b_{s-s_0} : \mathbb{R} \to (0, \infty), s \in S\}$, such that

$$\left(\left\{ \frac{X(s_i) - a_{s_i - s_0} \{X(s_0)\}}{b_{s_i - s_0} \{X(s_0)\}} \right\}_{i=1,\dots,d}, X(s_0) - u \right) | X(s_0) > u$$

$$\xrightarrow{d} \left(\left\{ Z^0(s_i) \right\}_{i=1,\dots,d}, E \right), \text{ as } u \to \infty,$$

• E as a standard exponential variable

• (Residual) process $\{Z^0(s) : s \in S\}$ independent of E, satisfies $Z^0(s_0) = 0$ almost surely

$$\{X(s)\} = a_{s-s_0}\{X(s_0)\} + b_{s-s_0}\{X(s_0)\}\{Z^0(s)\}.$$

Modelling choices for normalising functions:

• Let
$$a_{s-s_0}(x) = x\alpha(s-s_0)$$
 for $\alpha : \mathbb{R}_+ \to [0,1]$ and let $b_{s-s_0}(x) = x^{\beta(s-s_0)}$ for $\beta : \mathbb{R}_+ \to [0,1]$.

• As
$$a_0(x) = x$$
, require $\alpha(0) = 1$.

- To have $\{X(s)\}$ independent of $X(s_0)$ at large distances, need $\lim_{s-s_0\to\infty} \alpha(s-s_0) = \lim_{s-s_0\to\infty} \beta(s-s_0) = 0.$
- Control dependence strength Extremal dependence between $X(s_i)$ and $X(s_0)$ decreases with $\alpha(s_i s_0)$.

$$\{X(s)\} = a_{s-s_0}\{X(s_0)\} + b_{s-s_0}\{X(s_0)\}\{Z^0(s)\}.$$

Modelling choices for normalising functions:

• Let $a_{s-s_0}(x) = x\alpha(s-s_0)$ for $\alpha : \mathbb{R}_+ \to [0,1]$ and let $b_{s-s_0}(x) = x^{\beta(s-s_0)}$ for $\beta : \mathbb{R}_+ \to [0,1]$.

- To have $\{X(s)\}$ independent of $X(s_0)$ at large distances, need $\lim_{s-s_0\to\infty} \alpha(s-s_0) = \lim_{s-s_0\to\infty} \beta(s-s_0) = 0.$
- Control dependence strength Extremal dependence between $X(s_i)$ and $X(s_0)$ decreases with $\alpha(s_i s_0)$.

$$\{X(s)\} = a_{s-s_0}\{X(s_0)\} + b_{s-s_0}\{X(s_0)\}\{Z^0(s)\}.$$

Modelling choices for normalising functions:

- Let $a_{s-s_0}(x) = x\alpha(s-s_0)$ for $\alpha : \mathbb{R}_+ \to [0,1]$ and let $b_{s-s_0}(x) = x^{\beta(s-s_0)}$ for $\beta : \mathbb{R}_+ \to [0,1]$.
- As $a_0(x) = x$, require $\alpha(0) = 1$.
- To have $\{X(s)\}$ independent of $X(s_0)$ at large distances, need $\lim_{s-s_0\to\infty} \alpha(s-s_0) = \lim_{s-s_0\to\infty} \beta(s-s_0) = 0.$
- Control dependence strength Extremal dependence between $X(s_i)$ and $X(s_0)$ decreases with $\alpha(s_i s_0)$.

$$\{X(s)\} = a_{s-s_0}\{X(s_0)\} + b_{s-s_0}\{X(s_0)\}\{Z^0(s)\}.$$

Modelling choices for normalising functions:

- Let $a_{s-s_0}(x) = x\alpha(s-s_0)$ for $\alpha : \mathbb{R}_+ \to [0,1]$ and let $b_{s-s_0}(x) = x^{\beta(s-s_0)}$ for $\beta : \mathbb{R}_+ \to [0,1]$.
- As $a_0(x) = x$, require $\alpha(0) = 1$.
- To have $\{X(s)\}$ independent of $X(s_0)$ at large distances, need $\lim_{s-s_0\to\infty} \alpha(s-s_0) = \lim_{s-s_0\to\infty} \beta(s-s_0) = 0.$
- Control dependence strength Extremal dependence between $X(s_i)$ and $X(s_0)$ decreases with $\alpha(s_i s_0)$.

$$\{X(s)\} = \alpha(s-s_0)X(s_0) + X(s_0)^{\beta(s-s_0)}\{Z^0(s)\}.$$

Modelling choice for dependence in $\{Z^0(s)\}$:

Start with a standard GP {Z(s)} with stationary correlation structure
Set {Z⁰(s)} = {Z(s)}|Z(s_0) = 0

$$\{X(s)\} = \alpha(s-s_0)X(s_0) + X(s_0)^{\beta(s-s_0)}\{Z^0(s)\}.$$

Modelling choice for dependence in $\{Z^0(s)\}$:

• Start with a standard GP $\{Z(s)\}$ with stationary correlation structure

• Set
$$\{Z^0(s)\} = \{Z(s)\}|Z(s_0) = 0$$

$$\{X(s)\} = \alpha(s-s_0)X(s_0) + X(s_0)^{\beta(s-s_0)}\{Z^0(s)\}.$$

Modelling choice for margins of $\{Z^0(s)\}$:

• Set margins of $\{Z^0(s)\}$ to delta-Laplace, with density

$$f(z) = \frac{\delta}{2k\sigma\Gamma\left(\frac{1}{\delta}\right)}\exp\left\{-\left|\frac{z-\mu}{k\sigma}\right|^{\delta}\right\},\,$$

with $\Gamma(\cdot)$ as the standard gamma function and $\mu \in \mathbb{R}, \sigma > 0, \delta > 0$ and $k^2 = \Gamma(1/\delta)\Gamma(3/\delta)$.

• More flexible than Laplace ($\delta = 1$) or Gaussian ($\delta = 2$) as allows for both.

$$\{X(s)\} = \alpha(s-s_0)X(s_0) + X(s_0)^{\beta(s-s_0)}\{Z^0(s)\}.$$

Modelling choice for margins of $\{Z^0(s)\}$:

• Set margins of $\{Z^0(s)\}$ to delta-Laplace, with density

$$f(z) = \frac{\delta}{2k\sigma\Gamma\left(\frac{1}{\delta}\right)} \exp\left\{-\left|\frac{z-\mu}{k\sigma}\right|^{\delta}\right\},\,$$

with $\Gamma(\cdot)$ as the standard gamma function and $\mu \in \mathbb{R}, \sigma > 0, \delta > 0$ and $k^2 = \Gamma(1/\delta)\Gamma(3/\delta)$.

• More flexible than Laplace ($\delta = 1$) or Gaussian ($\delta = 2$) as allows for both.

$$\{X(s)\} = \alpha(s-s_0)X(s_0) + X(s_0)^{\beta(s-s_0)}\{Z^0(s)\}.$$

Modelling choice for margins of $\{Z^0(s)\}$:

- Parametrise μ, σ and δ as functions of $s s_0$.
- For $Z^0(s_0) = 0$ almost surely, require $\mu(0) = \sigma(0) = 0$.
- For standard Laplace margins at large enough distances need $\mu(s s_0) \rightarrow 0, \sigma(s s_0) \rightarrow \sqrt{2}$ and $\delta(s s_0) \rightarrow 1$ as $s s_0 \rightarrow \infty$.

$$\{X(s)\} = \alpha(s-s_0)X(s_0) + X(s_0)^{\beta(s-s_0)}\{Z^0(s)\}.$$

Modelling choice for margins of $\{Z^0(s)\}$:

- Parametrise μ, σ and δ as functions of $s s_0$.
- For $Z^0(s_0) = 0$ almost surely, require $\mu(0) = \sigma(0) = 0$.
- For standard Laplace margins at large enough distances need $\mu(s s_0) \rightarrow 0, \sigma(s s_0) \rightarrow \sqrt{2}$ and $\delta(s s_0) \rightarrow 1$ as $s s_0 \rightarrow \infty$.

$$\{X(s)\} = \alpha(s - s_0)X(s_0) + X(s_0)^{\beta(s-s_0)}\{Z^0(s)\}.$$

Modelling choice for margins of $\{Z^0(s)\}$:

- Parametrise μ, σ and δ as functions of $s s_0$.
- For $Z^0(s_0) = 0$ almost surely, require $\mu(0) = \sigma(0) = 0$.
- For standard Laplace margins at large enough distances need $\mu(s s_0) \rightarrow 0, \sigma(s s_0) \rightarrow \sqrt{2}$ and $\delta(s s_0) \rightarrow 1$ as $s s_0 \rightarrow \infty$.

- Cannot remove zeroes Aggregates over larger spatial areas may contain zeroes
- Solution Censored likelihood
 - Estimate $p(s) = \Pr{\text{No rain as } s}$ from data using a logistic GAM.
 - Set c(s) = F_L⁻¹{p(s)} where F_L(·) is the standard Laplace CDF i.e. probability of no rain on standard Laplace scale
 - Use c(s) as censoring threshold in likelihood. When simulating from dependence model, set any value below c(s) to 0.

- Cannot remove zeroes Aggregates over larger spatial areas may contain zeroes
- Solution Censored likelihood
 - Estimate $p(s) = Pr\{No \text{ rain as } s\}$ from data using a logistic GAM.
 - Set $c(s) = F_L^{-1}{p(s)}$ where $F_L(\cdot)$ is the standard Laplace CDF i.e. probability of no rain on standard Laplace scale
 - Use c(s) as censoring threshold in likelihood. When simulating from dependence model, set any value below c(s) to 0.

- Cannot remove zeroes Aggregates over larger spatial areas may contain zeroes
- Solution Censored likelihood
 - Estimate $p(s) = Pr\{No \text{ rain as } s\}$ from data using a logistic GAM.
 - Set c(s) = F_L⁻¹{p(s)} where F_L(·) is the standard Laplace CDF i.e. probability of no rain on standard Laplace scale
 - Use c(s) as censoring threshold in likelihood. When simulating from dependence model, set any value below c(s) to 0.

- Cannot remove zeroes Aggregates over larger spatial areas may contain zeroes
- Solution Censored likelihood
 - Estimate $p(s) = Pr\{No \text{ rain as } s\}$ from data using a logistic GAM.
 - Set $c(s) = F_L^{-1}{p(s)}$ where $F_L(\cdot)$ is the standard Laplace CDF i.e. probability of no rain on standard Laplace scale
 - Use c(s) as censoring threshold in likelihood. When simulating from dependence model, set any value below c(s) to 0.

- Cannot remove zeroes Aggregates over larger spatial areas may contain zeroes
- Solution Censored likelihood
 - Estimate $p(s) = Pr\{No \text{ rain as } s\}$ from data using a logistic GAM.
 - Set $c(s) = F_L^{-1}{p(s)}$ where $F_L(\cdot)$ is the standard Laplace CDF i.e. probability of no rain on standard Laplace scale
 - Use c(s) as censoring threshold in likelihood. When simulating from dependence model, set any value below c(s) to 0.

Inference

- Pairwise likelihood due to computational complexity Calculate likelihood for single conditioning site
- Want to simulate given extreme at any conditioning site Assume stationary dependence Take product over all conditioning sites
- Simulation Full details omitted
 - Simulate {X(s)}| max_{s∈S} X(s) > u i.e. extreme at any conditioning site - Using importance sampling
 - Require aggregate of unconditional process Use observations for {X(s)} | max_{s∈S} X(s) < u
 - Transform to $\{Y(s)\}$ using marginal model

- Pairwise likelihood due to computational complexity Calculate likelihood for single conditioning site
- Want to simulate given extreme at any conditioning site Assume stationary dependence Take product over all conditioning sites
- Simulation Full details omitted
 - Simulate {X(s)}| max_{s∈S} X(s) > u i.e. extreme at any conditioning site - Using importance sampling
 - Require aggregate of unconditional process Use observations for {X(s)} | max_{s∈S} X(s) < u
 - Transform to $\{Y(s)\}$ using marginal model

- Pairwise likelihood due to computational complexity Calculate likelihood for single conditioning site
- Want to simulate given extreme at any conditioning site Assume stationary dependence Take product over all conditioning sites
- Simulation Full details omitted
 - Simulate {X(s)} | max_{s∈S} X(s) > u i.e. extreme at any conditioning site - Using importance sampling
 - Require aggregate of unconditional process Use observations for {X(s)}|max_{s∈S} X(s) < u
 - Transform to {Y(s)} using marginal model

- Pairwise likelihood due to computational complexity Calculate likelihood for single conditioning site
- Want to simulate given extreme at any conditioning site Assume stationary dependence Take product over all conditioning sites

Simulation - Full details omitted

- Simulate {X(s)}| max_{s∈S} X(s) > u i.e. extreme at any conditioning site - Using importance sampling
- Require aggregate of unconditional process Use observations for $\{X(s)\}|\max_{s\in S}X(s) < u$
- Transform to $\{Y(s)\}$ using marginal model

- Pairwise likelihood due to computational complexity Calculate likelihood for single conditioning site
- Want to simulate given extreme at any conditioning site Assume stationary dependence Take product over all conditioning sites
- Simulation Full details omitted
 - Simulate {X(s)}| max_{s∈S} X(s) > u i.e. extreme at any conditioning site - Using importance sampling
 - Require aggregate of unconditional process Use observations for $\{X(s)\}|\max_{s\in S}X(s) < u$
 - Transform to $\{Y(s)\}$ using marginal model

- Pairwise likelihood due to computational complexity Calculate likelihood for single conditioning site
- Want to simulate given extreme at any conditioning site Assume stationary dependence Take product over all conditioning sites
- Simulation Full details omitted
 - Simulate {X(s)}| max_{s∈S} X(s) > u i.e. extreme at any conditioning site - Using importance sampling
 - Require aggregate of unconditional process Use observations for $\{X(s)\}|\max_{s\in S}X(s) < u$
 - Transform to $\{Y(s)\}$ using marginal model

- Pairwise likelihood due to computational complexity Calculate likelihood for single conditioning site
- Want to simulate given extreme at any conditioning site Assume stationary dependence Take product over all conditioning sites
- Simulation Full details omitted
 - Simulate {X(s)} | max_{s∈S} X(s) > u i.e. extreme at any conditioning site - Using importance sampling
 - Require aggregate of unconditional process Use observations for $\{X(s)\}|\max_{s\in S}X(s) < u$
 - Transform to $\{Y(s)\}$ using marginal model

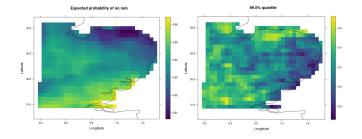
• Hourly precipitation rate (mm/hour), Summer (JJA), 1980-2000

- From UKCP18 climate projections values assigned to 934 spatial grid-boxes rather than point locations Require mean for R_A , rather than integral
- CPM Spatial resolution $5km \times 5km$ in East-Anglia Flat, unlikely to have non-stationarity in dependence

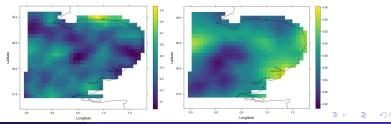
- Hourly precipitation rate (mm/hour), Summer (JJA), 1980-2000
- From UKCP18 climate projections values assigned to 934 spatial grid-boxes rather than point locations Require mean for R_A , rather than integral
- CPM Spatial resolution $5km \times 5km$ in East-Anglia Flat, unlikely to have non-stationarity in dependence

- Hourly precipitation rate (mm/hour), Summer (JJA), 1980-2000
- From UKCP18 climate projections values assigned to 934 spatial grid-boxes rather than point locations Require mean for R_A , rather than integral
- CPM Spatial resolution $5km \times 5km$ in East-Anglia Flat, unlikely to have non-stationarity in dependence

Marginal model results



GPD shape



Jordan Richards

CMStats 2020

December 19, 2020 14 /

- To get an idea of the functional forms of the dependence parameters, we fit a simple dependence model
 - No dependence in residual process $\{Z^0(s)\}$
 - Individual parameter estimates, rather than fitted functions i.e. sequence of α_{si} for i = 1,..., d, not α(s - s₀)
 - Done for several conditioning sites spread out over domain
- When functional forms decided, can fit full model

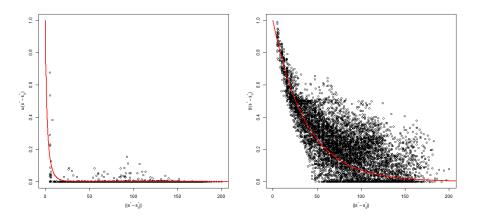
- To get an idea of the functional forms of the dependence parameters, we fit a simple dependence model
 - No dependence in residual process $\{Z^0(s)\}$
 - Individual parameter estimates, rather than fitted functions i.e. sequence of α_{s_i} for i = 1, ..., d, not $\alpha(s s_0)$
 - Done for several conditioning sites spread out over domain
- When functional forms decided, can fit full model

- To get an idea of the functional forms of the dependence parameters, we fit a simple dependence model
 - No dependence in residual process $\{Z^0(s)\}$
 - Individual parameter estimates, rather than fitted functions i.e. sequence of α_{si} for i = 1,..., d, not α(s - s₀)
 - Done for several conditioning sites spread out over domain
- When functional forms decided, can fit full model

- To get an idea of the functional forms of the dependence parameters, we fit a simple dependence model
 - No dependence in residual process $\{Z^0(s)\}$
 - Individual parameter estimates, rather than fitted functions i.e. sequence of α_{si} for i = 1,..., d, not α(s - s₀)
 - Done for several conditioning sites spread out over domain

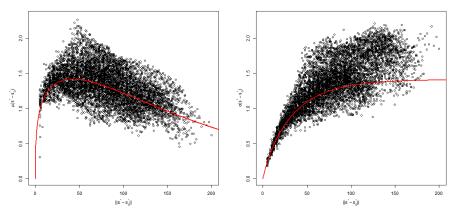
• When functional forms decided, can fit full model

- To get an idea of the functional forms of the dependence parameters, we fit a simple dependence model
 - No dependence in residual process $\{Z^0(s)\}$
 - Individual parameter estimates, rather than fitted functions i.e. sequence of α_{si} for i = 1,..., d, not α(s - s₀)
 - Done for several conditioning sites spread out over domain
- When functional forms decided, can fit full model



• Powered exponential decay - $\exp(-((s-s_0)/\lambda)^{\kappa}), \ \lambda > 0, \kappa > 0$

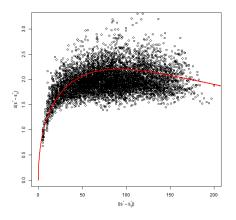
Mu/Sigma



- $\mu(s s_0) = K(s s_0)^{\kappa} \exp(-(s s_0)/\lambda), \quad K > 0, \lambda > 0, \kappa > 0$ i.e. Gamma kernel
- $\sigma(s s_0) = \sqrt{2} \{1 \exp(-((s s_0)/\lambda)^{\kappa})\}$ i.e. bounded powered exponential growth

Jordan Richards

Delta/Correlation

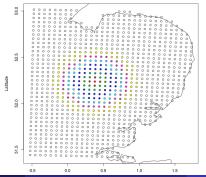


- $\delta(s s_0) = 1 + (K_1(s s_0)^{\kappa} K_2) \exp(-(s s_0)/\lambda), K_1 > 0, K_2 < 1, \lambda > 0, \kappa > 0$ i.e. shifted-Gamma kernel
- Matérn correlation function (not pictured)

Jordan Richards

Q-Q plots for high quantiles:

- How well does the model for $\{Y(s)\}$ replicate empirical R_A ?
- Simulate over entire domain
- Aggregate over increasing larger regions (coloured points and interior) (125, 525, 1425, 2425, 3350, 5425) - km²
- Compare quantiles against data



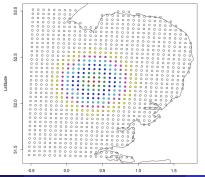
Jordan Richards

CMStats 2020

December 19, 2020 19 / 27

Q-Q plots for high quantiles:

- How well does the model for $\{Y(s)\}$ replicate empirical R_A ?
- Simulate over entire domain
- Aggregate over increasing larger regions (coloured points and interior) (125, 525, 1425, 2425, 3350, 5425) - km²
- Compare quantiles against data



Jordan Richards

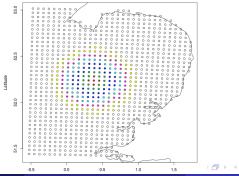
CMStats 2020

December 19, 2020 19 / 27

Q-Q plots for high quantiles:

- How well does the model for $\{Y(s)\}$ replicate empirical R_A ?
- Simulate over entire domain
- Aggregate over increasing larger regions (coloured points and interior) (125, 525, 1425, 2425, 3350, 5425) - km²

Compare quantiles against data

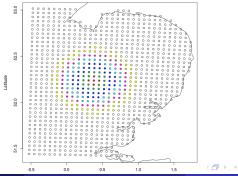


Jordan Richards

CMStats 2020

Q-Q plots for high quantiles:

- How well does the model for $\{Y(s)\}$ replicate empirical R_A ?
- Simulate over entire domain
- Aggregate over increasing larger regions (coloured points and interior) (125, 525, 1425, 2425, 3350, 5425) - km²
- Compare quantiles against data



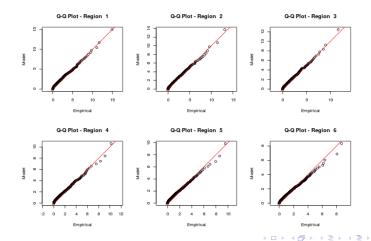
Jordan Richards

CMStats 2020

Model diagnostics

Q-Q plots for high quantiles:

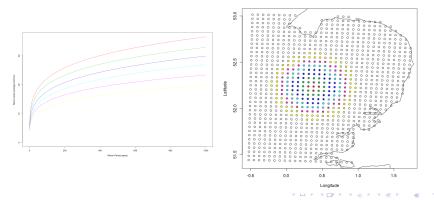
- Regions increase in size with label (i.e., 1 smallest 6 biggest)
- Largest quantile corresponds to a 20 year return level



CMStats 2020

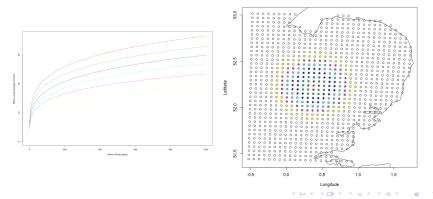
Results

- *GPD* modelling for aggregate return levels up to 1000 year return-level
- No bias-variance trade-off issues can just simulate more realisations
- Self-consistent i.e. monotonically decreasing as (nested) region size increases



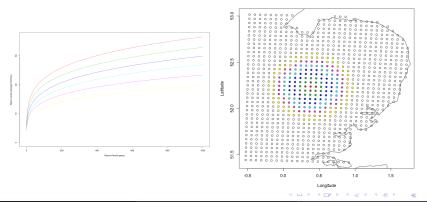
Results

- *GPD* modelling for aggregate return levels up to 1000 year return-level
- No bias-variance trade-off issues can just simulate more realisations
- Self-consistent i.e. monotonically decreasing as (nested) region size increases



Results

- *GPD* modelling for aggregate return levels up to 1000 year return-level
- No bias-variance trade-off issues can just simulate more realisations
- Self-consistent i.e. monotonically decreasing as (nested) region size increases



- Margins *GPD* GAM \rightarrow transform to $\{X(s)\}$
- Dependence in {*X*(*s*)} Extensions of spatial conditional extremes model
- Zeroes handled through censored likelihood
- Can simulate from model for $\{Y(s)\}$ to produce inference on spatial aggregates R_A
- Self-consistent inference as all aggregates from same model

- Margins *GPD* GAM \rightarrow transform to $\{X(s)\}$
- Dependence in {*X*(*s*)} Extensions of spatial conditional extremes model
- Zeroes handled through censored likelihood
- Can simulate from model for $\{Y(s)\}$ to produce inference on spatial aggregates R_A
- Self-consistent inference as all aggregates from same model

- Margins GPD GAM \rightarrow transform to $\{X(s)\}$
- Dependence in {*X*(*s*)} Extensions of spatial conditional extremes model
- Zeroes handled through censored likelihood
- Can simulate from model for $\{Y(s)\}$ to produce inference on spatial aggregates R_A
- Self-consistent inference as all aggregates from same model

- Margins GPD GAM \rightarrow transform to $\{X(s)\}$
- Dependence in {*X*(*s*)} Extensions of spatial conditional extremes model

• Zeroes handled through censored likelihood

- Can simulate from model for {*Y*(*s*)} to produce inference on spatial aggregates *R*_A
- Self-consistent inference as all aggregates from same model

- Margins GPD GAM \rightarrow transform to $\{X(s)\}$
- Dependence in {*X*(*s*)} Extensions of spatial conditional extremes model
- Zeroes handled through censored likelihood
- Can simulate from model for $\{Y(s)\}$ to produce inference on spatial aggregates R_A
- Self-consistent inference as all aggregates from same model

- Model high-res. precipitation process $\{Y(s)\}$
 - Margins GPD GAM \rightarrow transform to $\{X(s)\}$
 - Dependence in {*X*(*s*)} Extensions of spatial conditional extremes model
- Zeroes handled through censored likelihood
- Can simulate from model for $\{Y(s)\}$ to produce inference on spatial aggregates R_A
- Self-consistent inference as all aggregates from same model

Shooter, R., Ross, E., Tawn, J., and Jonathan, P. (2019). On spatial conditional extremes for ocean storm severity. *Environmetrics*, 30(6):e2562.

Simpson, E. S. and Wadsworth, J. L. (2020).

Conditional modelling of spatio-temporal extremes for Red Sea surface temperatures. *arXiv e-prints*, arXiv:2002.04362.

Wadsworth, J. L. and Tawn, J. (2019).

Higher-dimensional spatial extremes via single-site conditioning. *arXiv e-prints*, arXiv:1912.06560.

Youngman, B. D. (2019).

Generalized additive models for exceedances of high thresholds with an application to return level estimation for U.S. wind gusts.

Journal of the American Statistical Association, 114(528):1865–1879.

Thanks for listening.

æ

- Full inference computationally difficult need stratified sampling regime for pairs of locations
- Edge effects caused by not simulating using s_0 outside S

- Full inference computationally difficult need stratified sampling regime for pairs of locations
- Edge effects caused by not simulating using s_0 outside S

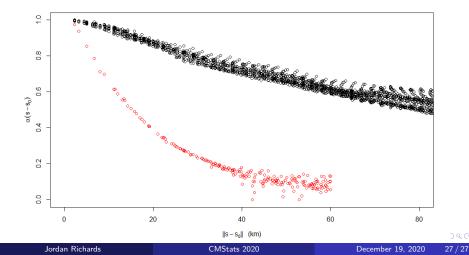
- Model for R_A|max_{s∈S}X(s) > u i.e, large magnitude event somewhere
 What about large value of aggregate caused by medium magnitude event everywhere?
- Under-estimating return level curves for large aggregates not capturing multiple extreme events
- Solution: use covariates to model large scale and small scale events separately i.e, frontal vs. convective rain

- Model for R_A|max_{s∈S}X(s) > u i.e, large magnitude event somewhere
 What about large value of aggregate caused by medium magnitude event everywhere?
- Under-estimating return level curves for large aggregates not capturing multiple extreme events
- Solution: use covariates to model large scale and small scale events separately i.e, frontal vs. convective rain

- Model for R_A|max_{s∈S}X(s) > u i.e, large magnitude event somewhere
 What about large value of aggregate caused by medium magnitude event everywhere?
- Under-estimating return level curves for large aggregates not capturing multiple extreme events
- Solution: use covariates to model large scale and small scale events separately i.e, frontal vs. convective rain

Preliminary Results

- Use algorithm to determine convective rain in data
- $\alpha(\cdot)$ estimates for convective (red) and non-convective rain



Preliminary Results

- Use algorithm to determine convective rain in data
- $\alpha(\cdot)$ estimates for convective (red) and non-convective rain

