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Motivation

River flooding caused by high intensity rainfall.
Flooding → damage → cost
Flooding not caused by rain at a single location, rather spatial
aggregate over catchment area
For spatial process {Y (s)} observed at sampling locations (spatial
sets) s = (s1, . . . , sd ) ⊂ S, interested in behaviour of aggregate
RA = 1

|A|
∫

A Y (s)ds for A ⊆ S (or equivalent sum)
Particularly interested in extremal behaviour (return levels) - largest
events likely to be the most damaging
Can just take sample aggregate RA - use GPD modelling and
extrapolate into tails
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Why not use sample aggregate?

Wasteful - Orders of magnitude less data to work with
Takes no information from the underlying marginal process or
dependence structure → Could potentially lead to inconsistent
inference i.e., no natural ordering of estimated return levels where
physically appropriate
Idea - model entire process, simulate, aggregate, use realisations for
inference
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Model

Model for marginal extremes and extremal dependence
Focus on modelling extremes of process - largest values of underlying
process produce largest values of aggregate
Marginal model at each site -

GPD above threshold, empirical below
Spatial smoothing through GAMs [Youngman, 2019]

Transform observed process to {X (s)} with standardised margins
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Dependence model - general outline

General outline for spatial conditional extremes
[Wadsworth and Tawn, 2019]

Spatial process {X (s) : s ∈ S} with standard exponential upper-tailed
margins (standard Laplace)
Condition on observing high value of process at conditioning site i.e.,
X (s0) > u
Model (normalised) process

More formally...
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Dependence model

For locations {s1, . . . , sd ; d ∈ N}, assume that there exists normalising
functions {as−s0 : R→ R, s ∈ S}, with a0(x) = x , and
{bs−s0 : R→ (0,∞), s ∈ S}, such that({X (si )− asi−s0{X (s0)}

bsi−s0{X (s0)}

}
i=1,...,d

,X (s0)− u
)
|X (s0) > u

d−→
({

Z 0(si )
}

i=1,...,d
,E
)
, as u →∞,

E as a standard exponential variable
(Residual) process {Z 0(s) : s ∈ S} independent of E , satisfies
Z 0(s0) = 0 almost surely
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Modelling choices - Normalising functions

Assume limit holds for X (s0) > u. We have

{X (s)} = as−s0{X (s0)}+ bs−s0{X (s0)}{Z 0(s)}.

Modelling choices for normalising functions:
Let as−s0(x) = xα(s − s0) for α : R+ → [0, 1] and let
bs−s0(x) = xβ(s−s0) for β : R+ → [0, 1].
As a0(x) = x , require α(0) = 1.
To have {X (s)} independent of X (s0) at large distances, need
lims−s0→∞ α(s − s0) = lims−s0→∞ β(s − s0) = 0.
Control dependence strength - Extremal dependence between X (si )
and X (s0) decreases with α(si − s0).
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Residual process - Dependence

Reminder that we have

{X (s)} = α(s − s0)X (s0) + X (s0)β(s−s0){Z 0(s)}.

Modelling choice for dependence in {Z 0(s)}:
Start with a standard GP {Z (s)} with stationary correlation structure
Set {Z 0(s)} = {Z (s)}|Z (s0) = 0
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Residual process - Margins

Reminder that we have

{X (s)} = α(s − s0)X (s0) + X (s0)β(s−s0){Z 0(s)}.

Modelling choice for margins of {Z 0(s)}:
Set margins of {Z 0(s)} to delta-Laplace, with density

f (z) = δ

2kσΓ
(
1
δ

) exp
{
−
∣∣∣∣z − µkσ

∣∣∣∣δ
}
,

with Γ(·) as the standard gamma function and µ ∈ R, σ > 0, δ > 0
and k2 = Γ(1/δ)Γ(3/δ).
More flexible than Laplace (δ = 1) or Gaussian (δ = 2) as allows for
both.
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Residual process - Margins cont.

Reminder that we have

{X (s)} = α(s − s0)X (s0) + X (s0)β(s−s0){Z 0(s)}.

Modelling choice for margins of {Z 0(s)}:
Parametrise µ, σ and δ as functions of s − s0.
For Z 0(s0) = 0 almost surely, require µ(0) = σ(0) = 0.
For standard Laplace margins at large enough distances - need
µ(s − s0)→ 0, σ(s − s0)→

√
2 and δ(s − s0)→ 1 as s − s0 →∞.
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Censoring

Biggest issue when modelling precipitation is the occurrence of dry periods
(zeroes in the data) which make the lower marginal tails discrete.

Cannot remove zeroes - Aggregates over larger spatial areas may
contain zeroes
Solution - Censored likelihood

Estimate p(s) = Pr{No rain as s} from data using a logistic GAM.
Set c(s) = F−1L {p(s)} where FL(·) is the standard Laplace CDF i.e.
probability of no rain on standard Laplace scale
Use c(s) as censoring threshold in likelihood. When simulating from
dependence model, set any value below c(s) to 0.
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Inference & Simulation

Inference
Pairwise likelihood due to computational complexity - Calculate
likelihood for single conditioning site
Want to simulate given extreme at any conditioning site - Assume
stationary dependence - Take product over all conditioning sites

Simulation - Full details omitted
Simulate {X (s)}|maxs∈S X (s) > u i.e. extreme at any conditioning
site - Using importance sampling
Require aggregate of unconditional process - Use observations for
{X (s)}|maxs∈S X (s) < u
Transform to {Y (s)} using marginal model
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Application

Hourly precipitation rate (mm/hour), Summer (JJA), 1980-2000
From UKCP18 climate projections - values assigned to 934 spatial
grid-boxes rather than point locations - Require mean for RA, rather
than integral
CPM - Spatial resolution 5km× 5km in East-Anglia - Flat, unlikely to
have non-stationarity in dependence
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Marginal model results
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Dependence Model - Parametric function choice

To get an idea of the functional forms of the dependence parameters,
we fit a simple dependence model

No dependence in residual process {Z 0(s)}
Individual parameter estimates, rather than fitted functions i.e.
sequence of αsi for i = 1, . . . , d , not α(s − s0)
Done for several conditioning sites spread out over domain

When functional forms decided, can fit full model
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Alpha/Beta

Powered exponential decay - exp(−((s − s0)/λ)κ), λ > 0, κ > 0
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Mu/Sigma

µ(s − s0) = K (s − s0)κ exp(−(s − s0)/λ), K > 0, λ > 0, κ > 0 i.e.
Gamma kernel
σ(s − s0) =

√
2{1− exp(−((s − s0)/λ)κ)} i.e. bounded powered

exponential growth
Jordan Richards CMStats 2020 December 19, 2020 17 / 27



Delta/Correlation

δ(s − s0) = 1 + (K1(s − s0)κ − K2) exp(−(s − s0)/λ), K1 > 0,K2 <
1, λ > 0, κ > 0 i.e. shifted-Gamma kernel
Matérn correlation function (not pictured)
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Aggregate diagnostics
Q-Q plots for high quantiles:

How well does the model for {Y (s)} replicate empirical RA?
Simulate over entire domain
Aggregate over increasing larger regions (coloured points and interior)
(125, 525, 1425, 2425, 3350, 5425)− km2

Compare quantiles against data
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Model diagnostics
Q-Q plots for high quantiles:

Regions increase in size with label (i.e., 1 smallest - 6 biggest)
Largest quantile corresponds to a 20 - year return level
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Results
GPD modelling for aggregate return levels - up to 1000 year
return-level
No bias-variance trade-off issues - can just simulate more realisations
Self-consistent i.e. monotonically decreasing as (nested) region size
increases
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Conclusion

Model high-res. precipitation process {Y (s)}
Margins - GPD GAM → transform to {X (s)}
Dependence in {X (s)} - Extensions of spatial conditional extremes
model

Zeroes handled through censored likelihood
Can simulate from model for {Y (s)} to produce inference on spatial
aggregates RA

Self-consistent inference as all aggregates from same model
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Thanks for listening.
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Issues

Full inference computationally difficult - need stratified sampling
regime for pairs of locations
Edge effects caused by not simulating using s0 outside S
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Extensions

Model for RA|maxs∈SX (s) > u i.e, large magnitude event somewhere
- What about large value of aggregate caused by medium magnitude
event everywhere?
Under-estimating return level curves for large aggregates - not
capturing multiple extreme events
Solution: use covariates to model large scale and small scale events
separately i.e, frontal vs. convective rain
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Preliminary Results
Use algorithm to determine convective rain in data
α(·) estimates for convective (red) and non-convective rain
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